ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-04-24
    Description: Only a few intracellular S-nitrosylated proteins have been identified, and it is unknown if protein S-nitrosylation/denitrosylation is a component of signal transduction cascades. Caspase-3 zymogens were found to be S-nitrosylated on their catalytic-site cysteine in unstimulated human cell lines and denitrosylated upon activation of the Fas apoptotic pathway. Decreased caspase-3 S-nitrosylation was associated with an increase in intracellular caspase activity. Fas therefore activates caspase-3 not only by inducing the cleavage of the caspase zymogen to its active subunits, but also by stimulating the denitrosylation of its active-site thiol. Protein S-nitrosylation/denitrosylation can thus serve as a regulatory process in signal transduction pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mannick, J B -- Hausladen, A -- Liu, L -- Hess, D T -- Zeng, M -- Miao, Q X -- Kane, L S -- Gow, A J -- Stamler, J S -- GM57601-01/GM/NIGMS NIH HHS/ -- HL52529/HL/NHLBI NIH HHS/ -- HL59130/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 23;284(5414):651-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Adult Oncology, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA. joan_mannick@dfci.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10213689" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD95/*physiology ; Apoptosis ; Binding Sites ; Caspase 3 ; Caspases/*metabolism ; Cell Line ; Cysteine/*metabolism ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Enzyme Precursors/metabolism ; Humans ; *Mercaptoethanol ; Nitric Oxide/*metabolism ; Nitric Oxide Synthase/antagonists & inhibitors ; Nitrites/metabolism ; Nitroso Compounds/metabolism ; *S-Nitrosothiols ; Signal Transduction ; omega-N-Methylarginine/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-01-19
    Description: Influenza A virus, being responsible for seasonal epidemics and reoccurring pandemics, represents a worldwide threat to public health. High mutation rates facilitate the generation of viral escape mutants, rendering vaccines and drugs directed against virus-encoded targets potentially ineffective. In contrast, targeting host cell determinants temporarily dispensable for the host but crucial for virus replication could prevent viral escape. Here we report the discovery of 287 human host cell genes influencing influenza A virus replication in a genome-wide RNA interference (RNAi) screen. Using an independent assay we confirmed 168 hits (59%) inhibiting either the endemic H1N1 (119 hits) or the current pandemic swine-origin (121 hits) influenza A virus strains, with an overlap of 60%. Notably, a subset of these common hits was also essential for replication of a highly pathogenic avian H5N1 strain. In-depth analyses of several factors provided insights into their infection stage relevance. Notably, SON DNA binding protein (SON) was found to be important for normal trafficking of influenza virions to late endosomes early in infection. We also show that a small molecule inhibitor of CDC-like kinase 1 (CLK1) reduces influenza virus replication by more than two orders of magnitude, an effect connected with impaired splicing of the viral M2 messenger RNA. Furthermore, influenza-virus-infected p27(-/-) (cyclin-dependent kinase inhibitor 1B; Cdkn1b) mice accumulated significantly lower viral titres in the lung, providing in vivo evidence for the importance of this gene. Thus, our results highlight the potency of genome-wide RNAi screening for the dissection of virus-host interactions and the identification of drug targets for a broad range of influenza viruses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karlas, Alexander -- Machuy, Nikolaus -- Shin, Yujin -- Pleissner, Klaus-Peter -- Artarini, Anita -- Heuer, Dagmar -- Becker, Daniel -- Khalil, Hany -- Ogilvie, Lesley A -- Hess, Simone -- Maurer, Andre P -- Muller, Elke -- Wolff, Thorsten -- Rudel, Thomas -- Meyer, Thomas F -- England -- Nature. 2010 Feb 11;463(7282):818-22. doi: 10.1038/nature08760. Epub 2010 Jan 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Department, Max Planck Institute for Infection Biology, Chariteplatz 1, 10117 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20081832" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Factors/genetics/metabolism ; Cell Line ; Cells, Cultured ; Chick Embryo ; Cyclin-Dependent Kinase Inhibitor p27/deficiency/genetics/metabolism ; Epithelial Cells/virology ; Genome, Human/genetics ; *Host-Pathogen Interactions/genetics/physiology ; Humans ; Influenza A Virus, H1N1 Subtype/classification/*growth & development ; Influenza, Human/*genetics/*virology ; Lung/cytology ; Mice ; Mice, Inbred C57BL ; Protein-Serine-Threonine Kinases/genetics ; Protein-Tyrosine Kinases/genetics ; *RNA Interference ; Virus Replication/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-08-16
    Description: Previous attempts have shown the potential of T cells in immunotherapy of cancer. Here, we report on the clinical activity of a bispecific antibody construct called blinatumomab, which has the potential to engage all cytotoxic T cells in patients for lysis of cancer cells. Doses as low as 0.005 milligrams per square meter per day in non-Hodgkin's lymphoma patients led to an elimination of target cells in blood. Partial and complete tumor regressions were first observed at a dose level of 0.015 milligrams, and all seven patients treated at a dose level of 0.06 milligrams experienced a tumor regression. Blinatumomab also led to clearance of tumor cells from bone marrow and liver. T cell-engaging antibodies appear to have therapeutic potential for the treatment of malignant diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bargou, Ralf -- Leo, Eugen -- Zugmaier, Gerhard -- Klinger, Matthias -- Goebeler, Mariele -- Knop, Stefan -- Noppeney, Richard -- Viardot, Andreas -- Hess, Georg -- Schuler, Martin -- Einsele, Hermann -- Brandl, Christian -- Wolf, Andreas -- Kirchinger, Petra -- Klappers, Petra -- Schmidt, Margit -- Riethmuller, Gert -- Reinhardt, Carsten -- Baeuerle, Patrick A -- Kufer, Peter -- New York, N.Y. -- Science. 2008 Aug 15;321(5891):974-7. doi: 10.1126/science.1158545.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Interdisciplinary Phase I/II Unit of the University of Wurzburg, Klinikstrasse 6-8, 97070 Wurzburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18703743" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Bispecific/*administration & dosage/adverse ; effects/immunology/therapeutic use ; Antineoplastic Agents/*administration & dosage/adverse effects/therapeutic use ; B-Lymphocytes/immunology ; Humans ; Immunologic Memory ; Immunophenotyping ; Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy/immunology ; Lymphocyte Count ; Lymphoma, B-Cell/*drug therapy/immunology ; Lymphoma, Follicular/*drug therapy/immunology ; Lymphoma, Mantle-Cell/*drug therapy/immunology ; Recurrence ; T-Lymphocytes/immunology ; T-Lymphocytes, Cytotoxic/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-05-24
    Description: Nitric oxide acts substantially in cellular signal transduction through stimulus-coupled S-nitrosylation of cysteine residues. The mechanisms that might subserve protein denitrosylation in cellular signaling remain uncharacterized. Our search for denitrosylase activities focused on caspase-3, an exemplar of stimulus-dependent denitrosylation, and identified thioredoxin and thioredoxin reductase in a biochemical screen. In resting human lymphocytes, thioredoxin-1 actively denitrosylated cytosolic caspase-3 and thereby maintained a low steady-state amount of S-nitrosylation. Upon stimulation of Fas, thioredoxin-2 mediated denitrosylation of mitochondria-associated caspase-3, a process required for caspase-3 activation, and promoted apoptosis. Inhibition of thioredoxin-thioredoxin reductases enabled identification of additional substrates subject to endogenous S-nitrosylation. Thus, specific enzymatic mechanisms may regulate basal and stimulus-induced denitrosylation in mammalian cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754768/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754768/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Benhar, Moran -- Forrester, Michael T -- Hess, Douglas T -- Stamler, Jonathan S -- P01 HL075443/HL/NHLBI NIH HHS/ -- P01 HL075443-050003/HL/NHLBI NIH HHS/ -- R01 HL059130/HL/NHLBI NIH HHS/ -- R01 HL059130-11/HL/NHLBI NIH HHS/ -- U19 ES012496/ES/NIEHS NIH HHS/ -- U19 ES012496-05/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 2008 May 23;320(5879):1050-4. doi: 10.1126/science.1158265.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18497292" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD95/metabolism ; Apoptosis ; Auranofin/pharmacology ; Binding Sites ; Caspase 3/metabolism ; Caspase Inhibitors ; Cell Line ; Cytosol/*metabolism ; Dinitrochlorobenzene/pharmacology ; HeLa Cells ; Humans ; Jurkat Cells ; Macrophages/metabolism ; Mitochondria/enzymology/*metabolism ; Mitochondrial Proteins/*metabolism ; Nitric Oxide/*metabolism ; Rats ; Recombinant Proteins/metabolism ; S-Nitrosothiols/*metabolism ; T-Lymphocytes/metabolism ; Thioredoxin-Disulfide Reductase/*metabolism ; Thioredoxins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2003-11-15
    Description: Prefoldins (PFDs) are members of a recently identified, small-molecular weight protein family able to assemble into molecular chaperone complexes. Here we describe an unusually large member of this family, termed URI, that forms complexes with other small-molecular weight PFDs and with RPB5, a shared subunit of all three RNA polymerases. Functional analysis of the yeast and human orthologs of URI revealed that both are targets of nutrient signaling and participate in gene expression controlled by the TOR kinase. Thus, URI is a component of a signaling pathway that coordinates nutrient availability with gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gstaiger, Matthias -- Luke, Brian -- Hess, Daniel -- Oakeley, Edward J -- Wirbelauer, Christiane -- Blondel, Marc -- Vigneron, Marc -- Peter, Matthias -- Krek, Wilhelm -- New York, N.Y. -- Science. 2003 Nov 14;302(5648):1208-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Friedrich Miescher Institut, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14615539" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/*metabolism ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Line ; DNA-Binding Proteins/metabolism ; DNA-Directed RNA Polymerases/metabolism ; GATA Transcription Factors ; *Gene Expression Regulation/drug effects ; Humans ; *Intracellular Signaling Peptides and Proteins ; Molecular Sequence Data ; Phosphorylation ; Protein Kinases/metabolism ; Protein Subunits/metabolism ; RNA Interference ; Repressor Proteins/metabolism ; Saccharomyces cerevisiae/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/metabolism ; *Signal Transduction ; Sirolimus/pharmacology ; TOR Serine-Threonine Kinases ; Trans-Activators/metabolism ; Transcription Factors/metabolism ; *Transcription, Genetic/drug effects ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-07-22
    Description: Ubiquitination is a crucial cellular signalling process, and is controlled on multiple levels. Cullin-RING E3 ubiquitin ligases (CRLs) are regulated by the eight-subunit COP9 signalosome (CSN). CSN inactivates CRLs by removing their covalently attached activator, NEDD8. NEDD8 cleavage by CSN is catalysed by CSN5, a Zn(2+)-dependent isopeptidase that is inactive in isolation. Here we present the crystal structure of the entire approximately 350-kDa human CSN holoenzyme at 3.8 A resolution, detailing the molecular architecture of the complex. CSN has two organizational centres: a horseshoe-shaped ring created by its six proteasome lid-CSN-initiation factor 3 (PCI) domain proteins, and a large bundle formed by the carboxy-terminal alpha-helices of every subunit. CSN5 and its dimerization partner, CSN6, are intricately embedded at the core of the helical bundle. In the substrate-free holoenzyme, CSN5 is autoinhibited, which precludes access to the active site. We find that neddylated CRL binding to CSN is sensed by CSN4, and communicated to CSN5 with the assistance of CSN6, resulting in activation of the deneddylase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lingaraju, Gondichatnahalli M -- Bunker, Richard D -- Cavadini, Simone -- Hess, Daniel -- Hassiepen, Ulrich -- Renatus, Martin -- Fischer, Eric S -- Thoma, Nicolas H -- England -- Nature. 2014 Aug 14;512(7513):161-5. doi: 10.1038/nature13566. Epub 2014 Jul 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland [2] University of Basel, Petersplatz 10, 4003 Basel, Switzerland [3]. ; 1] Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland [2] University of Basel, Petersplatz 10, 4003 Basel, Switzerland. ; Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland. ; Novartis Pharma AG, Institutes for Biomedical Research, Novartis Campus, 4056 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043011" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Catalytic Domain ; Crystallography, X-Ray ; Enzyme Activation ; Humans ; Intracellular Signaling Peptides and Proteins/metabolism ; *Models, Molecular ; Multiprotein Complexes/*chemistry ; Peptide Hydrolases/*chemistry/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-11-26
    Description: Cell adhesions to the extracellular matrix (ECM) are necessary for morphogenesis, immunity and wound healing. Focal adhesions are multifunctional organelles that mediate cell-ECM adhesion, force transmission, cytoskeletal regulation and signalling. Focal adhesions consist of a complex network of trans-plasma-membrane integrins and cytoplasmic proteins that form a 〈200-nm plaque linking the ECM to the actin cytoskeleton. The complexity of focal adhesion composition and dynamics implicate an intricate molecular machine. However, focal adhesion molecular architecture remains unknown. Here we used three-dimensional super-resolution fluorescence microscopy (interferometric photoactivated localization microscopy) to map nanoscale protein organization in focal adhesions. Our results reveal that integrins and actin are vertically separated by a approximately 40-nm focal adhesion core region consisting of multiple protein-specific strata: a membrane-apposed integrin signalling layer containing integrin cytoplasmic tails, focal adhesion kinase and paxillin; an intermediate force-transduction layer containing talin and vinculin; and an uppermost actin-regulatory layer containing zyxin, vasodilator-stimulated phosphoprotein and alpha-actinin. By localizing amino- and carboxy-terminally tagged talins, we reveal talin's polarized orientation, indicative of a role in organizing the focal adhesion strata. The composite multilaminar protein architecture provides a molecular blueprint for understanding focal adhesion functions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3046339/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3046339/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kanchanawong, Pakorn -- Shtengel, Gleb -- Pasapera, Ana M -- Ramko, Ericka B -- Davidson, Michael W -- Hess, Harald F -- Waterman, Clare M -- Z01 HL005105-01/Intramural NIH HHS/ -- Z99 HL999999/Intramural NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Nov 25;468(7323):580-4. doi: 10.1038/nature09621.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21107430" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; Cell Adhesion ; Cell Line ; Cell Line, Tumor ; Cell Membrane/metabolism/ultrastructure ; Extracellular Matrix/*metabolism/ultrastructure ; Humans ; Integrins/*metabolism ; Mice ; Models, Biological
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-05-19
    Description: Peripartum cardiomyopathy (PPCM) is an often fatal disease that affects pregnant women who are near delivery, and it occurs more frequently in women with pre-eclampsia and/or multiple gestation. The aetiology of PPCM, and why it is associated with pre-eclampsia, remain unknown. Here we show that PPCM is associated with a systemic angiogenic imbalance, accentuated by pre-eclampsia. Mice that lack cardiac PGC-1alpha, a powerful regulator of angiogenesis, develop profound PPCM. Importantly, the PPCM is entirely rescued by pro-angiogenic therapies. In humans, the placenta in late gestation secretes VEGF inhibitors like soluble FLT1 (sFLT1), and this is accentuated by multiple gestation and pre-eclampsia. This anti-angiogenic environment is accompanied by subclinical cardiac dysfunction, the extent of which correlates with circulating levels of sFLT1. Exogenous sFLT1 alone caused diastolic dysfunction in wild-type mice, and profound systolic dysfunction in mice lacking cardiac PGC-1alpha. Finally, plasma samples from women with PPCM contained abnormally high levels of sFLT1. These data indicate that PPCM is mainly a vascular disease, caused by excess anti-angiogenic signalling in the peripartum period. The data also explain how late pregnancy poses a threat to cardiac homeostasis, and why pre-eclampsia and multiple gestation are important risk factors for the development of PPCM.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3356917/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3356917/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Patten, Ian S -- Rana, Sarosh -- Shahul, Sajid -- Rowe, Glenn C -- Jang, Cholsoon -- Liu, Laura -- Hacker, Michele R -- Rhee, Julie S -- Mitchell, John -- Mahmood, Feroze -- Hess, Philip -- Farrell, Caitlin -- Koulisis, Nicole -- Khankin, Eliyahu V -- Burke, Suzanne D -- Tudorache, Igor -- Bauersachs, Johann -- del Monte, Federica -- Hilfiker-Kleiner, Denise -- Karumanchi, S Ananth -- Arany, Zoltan -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 May 9;485(7398):333-8. doi: 10.1038/nature11040.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22596155" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bromocriptine/pharmacology/therapeutic use ; Cardiomyopathies/blood/drug therapy/*etiology/*physiopathology ; Disease Models, Animal ; Female ; Heart/drug effects/physiopathology ; Humans ; Kaplan-Meier Estimate ; Male ; Mice ; Mice, Knockout ; Myocytes, Cardiac/drug effects/metabolism ; Neovascularization, Pathologic/*complications/drug therapy/*physiopathology ; Neovascularization, Physiologic/drug effects/physiology ; Pre-Eclampsia/physiopathology ; Pregnancy ; Pregnancy Complications, Cardiovascular/blood/drug ; therapy/*etiology/*physiopathology ; Trans-Activators/deficiency/genetics/metabolism ; Transcription Factors ; Vascular Endothelial Growth Factor A/pharmacology/therapeutic use ; Vascular Endothelial Growth Factor ; Receptor-1/blood/genetics/metabolism/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-06-07
    Description: The recent 70% decline in deforestation in the Brazilian Amazon suggests that it is possible to manage the advance of a vast agricultural frontier. Enforcement of laws, interventions in soy and beef supply chains, restrictions on access to credit, and expansion of protected areas appear to have contributed to this decline, as did a decline in the demand for new deforestation. The supply chain interventions that fed into this deceleration are precariously dependent on corporate risk management, and public policies have relied excessively on punitive measures. Systems for delivering positive incentives for farmers to forgo deforestation have been designed but not fully implemented. Territorial approaches to deforestation have been effective and could consolidate progress in slowing deforestation while providing a framework for addressing other important dimensions of sustainable development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nepstad, Daniel -- McGrath, David -- Stickler, Claudia -- Alencar, Ane -- Azevedo, Andrea -- Swette, Briana -- Bezerra, Tathiana -- DiGiano, Maria -- Shimada, Joao -- Seroa da Motta, Ronaldo -- Armijo, Eric -- Castello, Leandro -- Brando, Paulo -- Hansen, Matt C -- McGrath-Horn, Max -- Carvalho, Oswaldo -- Hess, Laura -- New York, N.Y. -- Science. 2014 Jun 6;344(6188):1118-23. doi: 10.1126/science.1248525.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Earth Innovation Institute, 3180 18th Street, Suite 205, San Francisco, CA 94110, USA. dnepstad@earthinnovation.org. ; Earth Innovation Institute, 3180 18th Street, Suite 205, San Francisco, CA 94110, USA. Universidade Federal do Oeste do Para, Bairro Fatima CEP 68040-470 Santarem, Para, Brasil. ; Earth Innovation Institute, 3180 18th Street, Suite 205, San Francisco, CA 94110, USA. ; Instituto de Pesquisa Ambiental da Amazonia, SHIN CA 5, Bloco J2, Sala 309, Bairro, Lago Norte, Brasilia-DF 71503-505. ; Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil. ; Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. ; Instituto de Pesquisa Ambiental da Amazonia, SHIN CA 5, Bloco J2, Sala 309, Bairro, Lago Norte, Brasilia-DF 71503-505. Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA. ; University of Maryland Department of Geographical Sciences, College Park, MD 20742, USA. ; Earth Research Institute, University of California, Santa Barbara, CA 93106-3060, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24904156" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brazil ; Cattle ; Conservation of Natural Resources/*trends ; Humans ; Meat/*supply & distribution ; *Public Policy ; Soybeans/*supply & distribution
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-01-18
    Description: The human immunodeficiency virus (HIV) hijacks the endosomal sorting complexes required for transport (ESCRT) to mediate virus release from infected cells. The nanoscale organization of ESCRT machinery necessary for mediating viral abscission is unclear. Here, we applied three-dimensional superresolution microscopy and correlative electron microscopy to delineate the organization of ESCRT components at HIV assembly sites. We observed ESCRT subunits localized within the head of budding virions and released particles, with head-localized levels of CHMP2A decreasing relative to Tsg101 and CHMP4B upon virus abscission. Thus, the driving force for HIV release may derive from initial scaffolding of ESCRT subunits within the viral bud interior followed by plasma membrane association and selective remodeling of ESCRT subunits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Van Engelenburg, Schuyler B -- Shtengel, Gleb -- Sengupta, Prabuddha -- Waki, Kayoko -- Jarnik, Michal -- Ablan, Sherimay D -- Freed, Eric O -- Hess, Harald F -- Lippincott-Schwartz, Jennifer -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Feb 7;343(6171):653-6. doi: 10.1126/science.1247786. Epub 2014 Jan 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24436186" target="_blank"〉PubMed〈/a〉
    Keywords: Endosomal Sorting Complexes Required for Transport/*metabolism ; HIV Infections/*virology ; HIV-1/metabolism/*physiology ; Humans ; Imaging, Three-Dimensional/methods ; Microscopy/methods ; Protein Subunits/metabolism ; Virion/metabolism/*physiology ; *Virus Assembly ; Virus Release ; gag Gene Products, Human Immunodeficiency Virus/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...