ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-02-16
    Description: Casein kinase 1 (CK1) members play key roles in numerous biological processes. They are considered "rogue" kinases, because their enzymatic activity appears unregulated. Contrary to this notion, we have identified the DEAD-box RNA helicase DDX3 as a regulator of the Wnt-beta-catenin network, where it acts as a regulatory subunit of CK1epsilon: In a Wnt-dependent manner, DDX3 binds CK1epsilon and directly stimulates its kinase activity, and promotes phosphorylation of the scaffold protein dishevelled. DDX3 is required for Wnt-beta-catenin signaling in mammalian cells and during Xenopus and Caenorhabditis elegans development. The results also suggest that the kinase-stimulatory function extends to other DDX and CK1 members, opening fresh perspectives for one of the longest-studied protein kinase families.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cruciat, Cristina-Maria -- Dolde, Christine -- de Groot, Reinoud E A -- Ohkawara, Bisei -- Reinhard, Carmen -- Korswagen, Hendrik C -- Niehrs, Christof -- New York, N.Y. -- Science. 2013 Mar 22;339(6126):1436-41. doi: 10.1126/science.1231499. Epub 2013 Feb 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23413191" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Animals ; Caenorhabditis elegans/genetics/growth & development/metabolism ; Caenorhabditis elegans Proteins/genetics/metabolism ; Casein Kinase Iepsilon/chemistry/*metabolism ; DEAD-box RNA Helicases/chemistry/genetics/*metabolism ; HEK293 Cells ; Humans ; Phosphoproteins/metabolism ; Phosphorylation ; Protein Binding ; Protein Structure, Tertiary ; RNA Helicases/chemistry/genetics/*metabolism ; Wnt Proteins/metabolism ; *Wnt Signaling Pathway ; Xenopus/embryology/genetics/metabolism ; Xenopus Proteins/chemistry/genetics/*metabolism ; beta Catenin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-05-21
    Description: beta-Catenin is a multifunctional protein that mediates Wnt signaling by binding to members of the T cell factor (TCF) family of transcription factors. Here, we report an evolutionarily conserved interaction of beta-catenin with FOXO transcription factors, which are regulated by insulin and oxidative stress signaling. beta-Catenin binds directly to FOXO and enhances FOXO transcriptional activity in mammalian cells. In Caenorhabditis elegans, loss of the beta-catenin BAR-1 reduces the activity of the FOXO ortholog DAF-16 in dauer formation and life span. Association of beta-catenin with FOXO was enhanced in cells exposed to oxidative stress. Furthermore, BAR-1 was required for the oxidative stress-induced expression of the DAF-16 target gene sod-3 and for resistance to oxidative damage. These results demonstrate a role for beta-catenin in regulating FOXO function that is particularly important under conditions of oxidative stress.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Essers, Marieke A G -- de Vries-Smits, Lydia M M -- Barker, Nick -- Polderman, Paulien E -- Burgering, Boudewijn M T -- Korswagen, Hendrik C -- New York, N.Y. -- Science. 2005 May 20;308(5725):1181-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry and Center for Biomedical Genetics, University Medical Center, Universiteitsweg 100, 3584 CG Utrecht, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15905404" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Caenorhabditis elegans/genetics/*metabolism/physiology ; Caenorhabditis elegans Proteins/genetics/*metabolism ; Carrier Proteins/genetics/metabolism ; Cell Cycle ; Cell Line ; Cell Line, Tumor ; Cyclin-Dependent Kinase Inhibitor p27 ; Cytoskeletal Proteins/chemistry/genetics/*metabolism ; DNA-Binding Proteins/metabolism ; Forkhead Transcription Factors ; Humans ; Hydrogen Peroxide/pharmacology ; Immunoprecipitation ; Insulin/pharmacology ; Intracellular Signaling Peptides and Proteins/genetics/metabolism ; Lithium Chloride/pharmacology ; Longevity ; Mice ; Mutation ; *Oxidative Stress ; Receptor, Insulin/genetics/metabolism ; *Signal Transduction ; Superoxide Dismutase/metabolism ; Trans-Activators/chemistry/genetics/*metabolism ; Transcription Factors/*metabolism ; Transfection ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-04-29
    Description: Wnt proteins function as morphogens that can form long-range concentration gradients to pattern developing tissues. Here, we show that the retromer, a multiprotein complex involved in intracellular protein trafficking, is required for long-range signaling of the Caenorhabditis elegans Wnt ortholog EGL-20. The retromer functions in EGL-20-producing cells to allow the formation of an EGL-20 gradient along the anteroposterior axis. This function is evolutionarily conserved, because Wnt target gene expression is also impaired in the absence of the retromer complex in vertebrates. These results demonstrate that the ability of Wnt to regulate long-range patterning events is dependent on a critical and conserved function of the retromer complex within Wnt-producing cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coudreuse, Damien Y M -- Roel, Giulietta -- Betist, Marco C -- Destree, Olivier -- Korswagen, Hendrik C -- New York, N.Y. -- Science. 2006 May 12;312(5775):921-4. Epub 2006 Apr 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hubrecht Laboratory and Center for Biomedical Genetics, Uppsalalaan 8, 3584 CT, Utrecht, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16645052" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Patterning ; Caenorhabditis elegans/cytology/genetics/growth & development/*physiology ; Caenorhabditis elegans Proteins/analysis/genetics/*physiology ; Cell Line ; Gene Expression ; Glycoproteins/analysis/genetics/*physiology ; Humans ; Multiprotein Complexes/*physiology ; Mutation ; Neurons/cytology/physiology ; RNA Interference ; *Signal Transduction ; Transgenes ; Vesicular Transport Proteins/genetics/physiology ; Wnt Proteins/*physiology ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...