ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1998-12-04
    Description: Cortical neurons communicate with various cortical and subcortical targets by way of stereotyped axon projections through the white matter. Slice overlay experiments indicate that the initial growth of cortical axons toward the white matter is regulated by a diffusible chemorepulsive signal localized near the marginal zone. Semaphorin III is a major component of this diffusible signal, and cortical neurons transduce this signal by way of the neuropilin-1 receptor. These observations indicate that semaphorin-neuropilin interactions play a critical role in the initial patterning of projections in the developing cortex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Polleux, F -- Giger, R J -- Ginty, D D -- Kolodkin, A L -- Ghosh, A -- NS35165/NS/NINDS NIH HHS/ -- NS36176/NS/NINDS NIH HHS/ -- NS534814/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1998 Dec 4;282(5395):1904-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9836643" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology ; Cell Line ; Cerebral Cortex/*cytology/embryology ; Coculture Techniques ; Gene Targeting ; Glycoproteins/genetics/*physiology ; Humans ; Mice ; Nerve Growth Factors/*metabolism ; Nerve Tissue Proteins/*physiology ; Neurons, Efferent/cytology/*physiology ; Neuropilin-1 ; Rats ; Recombinant Proteins/metabolism ; Semaphorin-3A ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-01-28
    Description: Mitochondria undergo fragmentation in response to electron transport chain (ETC) poisons and mitochondrial DNA-linked disease mutations, yet how these stimuli mechanistically connect to the mitochondrial fission and fusion machinery is poorly understood. We found that the energy-sensing adenosine monophosphate (AMP)-activated protein kinase (AMPK) is genetically required for cells to undergo rapid mitochondrial fragmentation after treatment with ETC inhibitors. Moreover, direct pharmacological activation of AMPK was sufficient to rapidly promote mitochondrial fragmentation even in the absence of mitochondrial stress. A screen for substrates of AMPK identified mitochondrial fission factor (MFF), a mitochondrial outer-membrane receptor for DRP1, the cytoplasmic guanosine triphosphatase that catalyzes mitochondrial fission. Nonphosphorylatable and phosphomimetic alleles of the AMPK sites in MFF revealed that it is a key effector of AMPK-mediated mitochondrial fission.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Toyama, Erin Quan -- Herzig, Sebastien -- Courchet, Julien -- Lewis, Tommy L Jr -- Loson, Oliver C -- Hellberg, Kristina -- Young, Nathan P -- Chen, Hsiuchen -- Polleux, Franck -- Chan, David C -- Shaw, Reuben J -- K99 NS091526/NS/NINDS NIH HHS/ -- K99NS091526/NS/NINDS NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- P30 CA014195/CA/NCI NIH HHS/ -- R01CA172229/CA/NCI NIH HHS/ -- R01DK080425/DK/NIDDK NIH HHS/ -- R01GM062967/GM/NIGMS NIH HHS/ -- R01GM110039/GM/NIGMS NIH HHS/ -- R01NS089456/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Jan 15;351(6270):275-81. doi: 10.1126/science.aab4138.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular and Cell Biology Laboratory and Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA. ; Department of Neuroscience, Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA. ; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA. ; Molecular and Cell Biology Laboratory and Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA. shaw@salk.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26816379" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/chemistry/genetics/*metabolism ; Adenosine Monophosphate/metabolism ; Amino Acid Motifs ; Cell Line, Tumor ; Cytoplasm/enzymology ; Dactinomycin/analogs & derivatives/pharmacology ; *Energy Metabolism ; Enzyme Activation ; GTP Phosphohydrolases/genetics/metabolism ; Humans ; Microtubule-Associated Proteins/genetics/metabolism ; Mitochondria/drug effects/enzymology/*physiology ; *Mitochondrial Dynamics ; Mitochondrial Proteins/genetics/metabolism ; Molecular Sequence Data ; Rotenone/pharmacology ; *Stress, Physiological
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...