ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-01-23
    Description: Current methods for differentiating isolates of predominant lineages of pathogenic bacteria often do not provide sufficient resolution to define precise relationships. Here, we describe a high-throughput genomics approach that provides a high-resolution view of the epidemiology and microevolution of a dominant strain of methicillin-resistant Staphylococcus aureus (MRSA). This approach reveals the global geographic structure within the lineage, its intercontinental transmission through four decades, and the potential to trace person-to-person transmission within a hospital environment. The ability to interrogate and resolve bacterial populations is applicable to a range of infectious diseases, as well as microbial ecology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2821690/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2821690/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harris, Simon R -- Feil, Edward J -- Holden, Matthew T G -- Quail, Michael A -- Nickerson, Emma K -- Chantratita, Narisara -- Gardete, Susana -- Tavares, Ana -- Day, Nick -- Lindsay, Jodi A -- Edgeworth, Jonathan D -- de Lencastre, Herminia -- Parkhill, Julian -- Peacock, Sharon J -- Bentley, Stephen D -- 076964/Wellcome Trust/United Kingdom -- Department of Health/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2010 Jan 22;327(5964):469-74. doi: 10.1126/science.1182395.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 15A, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20093474" target="_blank"〉PubMed〈/a〉
    Keywords: Asia/epidemiology ; Bacterial Typing Techniques ; Cross Infection/epidemiology/*microbiology/transmission ; Europe/epidemiology ; Evolution, Molecular ; *Genome, Bacterial ; Genomics/methods ; Humans ; Likelihood Functions ; Methicillin-Resistant Staphylococcus aureus/*classification/*genetics/isolation & ; purification ; Molecular Epidemiology ; Molecular Sequence Data ; Phylogeny ; Polymorphism, Single Nucleotide ; Sequence Analysis, DNA ; South America/epidemiology ; Staphylococcal Infections/epidemiology/*microbiology/transmission ; Time Factors ; United States/epidemiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-01-29
    Description: Epidemiological studies of the naturally transformable bacterial pathogen Streptococcus pneumoniae have previously been confounded by high rates of recombination. Sequencing 240 isolates of the PMEN1 (Spain(23F)-1) multidrug-resistant lineage enabled base substitutions to be distinguished from polymorphisms arising through horizontal sequence transfer. More than 700 recombinations were detected, with genes encoding major antigens frequently affected. Among these were 10 capsule-switching events, one of which accompanied a population shift as vaccine-escape serotype 19A isolates emerged in the USA after the introduction of the conjugate polysaccharide vaccine. The evolution of resistance to fluoroquinolones, rifampicin, and macrolides was observed to occur on multiple occasions. This study details how genomic plasticity within lineages of recombinogenic bacteria can permit adaptation to clinical interventions over remarkably short time scales.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3648787/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3648787/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Croucher, Nicholas J -- Harris, Simon R -- Fraser, Christophe -- Quail, Michael A -- Burton, John -- van der Linden, Mark -- McGee, Lesley -- von Gottberg, Anne -- Song, Jae Hoon -- Ko, Kwan Soo -- Pichon, Bruno -- Baker, Stephen -- Parry, Christopher M -- Lambertsen, Lotte M -- Shahinas, Dea -- Pillai, Dylan R -- Mitchell, Timothy J -- Dougan, Gordon -- Tomasz, Alexander -- Klugman, Keith P -- Parkhill, Julian -- Hanage, William P -- Bentley, Stephen D -- 076962/Wellcome Trust/United Kingdom -- 076964/Wellcome Trust/United Kingdom -- G0800596/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2011 Jan 28;331(6016):430-4. doi: 10.1126/science.1198545.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21273480" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Anti-Bacterial Agents/pharmacology ; Antigenic Variation ; DNA Transposable Elements ; Drug Resistance, Multiple, Bacterial ; *Evolution, Molecular ; Genome, Bacterial ; Humans ; Molecular Epidemiology ; Phylogeny ; Phylogeography ; Pneumococcal Infections/drug therapy/*microbiology ; Pneumococcal Vaccines/immunology ; Polymorphism, Single Nucleotide ; Prophages/genetics ; *Recombination, Genetic ; Selection, Genetic ; Serotyping ; Streptococcus Phages/genetics ; Streptococcus pneumoniae/classification/drug effects/*genetics/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-04-09
    Description: Cancers acquire resistance to systemic treatment as a result of clonal evolution and selection. Repeat biopsies to study genomic evolution as a result of therapy are difficult, invasive and may be confounded by intra-tumour heterogeneity. Recent studies have shown that genomic alterations in solid cancers can be characterized by massively parallel sequencing of circulating cell-free tumour DNA released from cancer cells into plasma, representing a non-invasive liquid biopsy. Here we report sequencing of cancer exomes in serial plasma samples to track genomic evolution of metastatic cancers in response to therapy. Six patients with advanced breast, ovarian and lung cancers were followed over 1-2 years. For each case, exome sequencing was performed on 2-5 plasma samples (19 in total) spanning multiple courses of treatment, at selected time points when the allele fraction of tumour mutations in plasma was high, allowing improved sensitivity. For two cases, synchronous biopsies were also analysed, confirming genome-wide representation of the tumour genome in plasma. Quantification of allele fractions in plasma identified increased representation of mutant alleles in association with emergence of therapy resistance. These included an activating mutation in PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha) following treatment with paclitaxel; a truncating mutation in RB1 (retinoblastoma 1) following treatment with cisplatin; a truncating mutation in MED1 (mediator complex subunit 1) following treatment with tamoxifen and trastuzumab, and following subsequent treatment with lapatinib, a splicing mutation in GAS6 (growth arrest-specific 6) in the same patient; and a resistance-conferring mutation in EGFR (epidermal growth factor receptor; T790M) following treatment with gefitinib. These results establish proof of principle that exome-wide analysis of circulating tumour DNA could complement current invasive biopsy approaches to identify mutations associated with acquired drug resistance in advanced cancers. Serial analysis of cancer genomes in plasma constitutes a new paradigm for the study of clonal evolution in human cancers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murtaza, Muhammed -- Dawson, Sarah-Jane -- Tsui, Dana W Y -- Gale, Davina -- Forshew, Tim -- Piskorz, Anna M -- Parkinson, Christine -- Chin, Suet-Feung -- Kingsbury, Zoya -- Wong, Alvin S C -- Marass, Francesco -- Humphray, Sean -- Hadfield, James -- Bentley, David -- Chin, Tan Min -- Brenton, James D -- Caldas, Carlos -- Rosenfeld, Nitzan -- Cancer Research UK/United Kingdom -- England -- Nature. 2013 May 2;497(7447):108-12. doi: 10.1038/nature12065. Epub 2013 Apr 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research UK Cambridge Institute and University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23563269" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Antineoplastic Agents/pharmacology/*therapeutic use ; Breast Neoplasms/drug therapy/genetics/pathology ; Carcinoma, Non-Small-Cell Lung/drug therapy/genetics/pathology ; DNA Mutational Analysis ; DNA, Neoplasm/*analysis/*genetics ; Drug Resistance, Neoplasm/drug effects/*genetics ; Evolution, Molecular ; Exome/genetics ; Female ; Genome, Human/genetics ; Genomics ; Humans ; Intercellular Signaling Peptides and Proteins/genetics ; Lung Neoplasms/drug therapy/genetics/pathology ; Mediator Complex Subunit 1/genetics ; Neoplasms/*drug therapy/*genetics/pathology ; Ovarian Neoplasms/drug therapy/genetics/pathology ; Phosphatidylinositol 3-Kinases/genetics ; Plasma/*chemistry ; Receptor, Epidermal Growth Factor/genetics ; Retinoblastoma Protein/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1996-10-25
    Description: The human genome is thought to harbor 50,000 to 100,000 genes, of which about half have been sampled to date in the form of expressed sequence tags. An international consortium was organized to develop and map gene-based sequence tagged site markers on a set of two radiation hybrid panels and a yeast artificial chromosome library. More than 16,000 human genes have been mapped relative to a framework map that contains about 1000 polymorphic genetic markers. The gene map unifies the existing genetic and physical maps with the nucleotide and protein sequence databases in a fashion that should speed the discovery of genes underlying inherited human disease. The integrated resource is available through a site on the World Wide Web at http://www.ncbi.nlm.nih.gov/SCIENCE96/.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schuler, G D -- Boguski, M S -- Stewart, E A -- Stein, L D -- Gyapay, G -- Rice, K -- White, R E -- Rodriguez-Tome, P -- Aggarwal, A -- Bajorek, E -- Bentolila, S -- Birren, B B -- Butler, A -- Castle, A B -- Chiannilkulchai, N -- Chu, A -- Clee, C -- Cowles, S -- Day, P J -- Dibling, T -- Drouot, N -- Dunham, I -- Duprat, S -- East, C -- Edwards, C -- Fan, J B -- Fang, N -- Fizames, C -- Garrett, C -- Green, L -- Hadley, D -- Harris, M -- Harrison, P -- Brady, S -- Hicks, A -- Holloway, E -- Hui, L -- Hussain, S -- Louis-Dit-Sully, C -- Ma, J -- MacGilvery, A -- Mader, C -- Maratukulam, A -- Matise, T C -- McKusick, K B -- Morissette, J -- Mungall, A -- Muselet, D -- Nusbaum, H C -- Page, D C -- Peck, A -- Perkins, S -- Piercy, M -- Qin, F -- Quackenbush, J -- Ranby, S -- Reif, T -- Rozen, S -- Sanders, C -- She, X -- Silva, J -- Slonim, D K -- Soderlund, C -- Sun, W L -- Tabar, P -- Thangarajah, T -- Vega-Czarny, N -- Vollrath, D -- Voyticky, S -- Wilmer, T -- Wu, X -- Adams, M D -- Auffray, C -- Walter, N A -- Brandon, R -- Dehejia, A -- Goodfellow, P N -- Houlgatte, R -- Hudson, J R Jr -- Ide, S E -- Iorio, K R -- Lee, W Y -- Seki, N -- Nagase, T -- Ishikawa, K -- Nomura, N -- Phillips, C -- Polymeropoulos, M H -- Sandusky, M -- Schmitt, K -- Berry, R -- Swanson, K -- Torres, R -- Venter, J C -- Sikela, J M -- Beckmann, J S -- Weissenbach, J -- Myers, R M -- Cox, D R -- James, M R -- Bentley, D -- Deloukas, P -- Lander, E S -- Hudson, T J -- HG00098/HG/NHGRI NIH HHS/ -- HG00206/HG/NHGRI NIH HHS/ -- HG00835/HG/NHGRI NIH HHS/ -- Wellcome Trust/United Kingdom -- etc. -- New York, N.Y. -- Science. 1996 Oct 25;274(5287):540-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8849440" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; *Chromosome Mapping ; Chromosomes, Artificial, Yeast ; Computer Communication Networks ; DNA, Complementary/genetics ; Databases, Factual ; Gene Expression ; Genetic Markers ; *Genome, Human ; *Human Genome Project ; Humans ; Multigene Family ; RNA, Messenger/genetics ; Sequence Homology, Nucleic Acid ; Sequence Tagged Sites
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1987-11-27
    Description: The c-myc proto-oncogene is involved in chromosomal translocations that are specifically and consistently found in Burkitt lymphoma. Although these translocations are thought to lead to a deregulation of c-myc expression, the structural and functional basis of this phenomenon has not been identified. Mutations in a specific region spanning approximately 70 base pairs and located at the 3' border of the first exon of translocated c-myc alleles were consistently detected in Burkitt lymphoma cells carrying classic (8:14) as well as variant (8:22 and 2:8) translocations. These structural alterations were accompanied by an altered pattern of c-myc transcription, namely, the removal of a block to transcriptional elongation that has been mapped to the same region. Thus, specific c-myc mutations leading to the alleviation of this block to transcriptional elongation may represent a general mechanism causing c-myc activation in Burkitt lymphoma.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cesarman, E -- Dalla-Favera, R -- Bentley, D -- Groudine, M -- NCI 28151/CI/NCPDCID CDC HHS/ -- NCI 37165/CI/NCPDCID CDC HHS/ -- NCI 37195/CI/NCPDCID CDC HHS/ -- New York, N.Y. -- Science. 1987 Nov 27;238(4831):1272-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, New York University School of Medicine, NY 10016.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3685977" target="_blank"〉PubMed〈/a〉
    Keywords: Burkitt Lymphoma/*genetics ; Cell Line ; Chromosomes, Human, Pair 14 ; Chromosomes, Human, Pair 2 ; Chromosomes, Human, Pair 22 ; Chromosomes, Human, Pair 8 ; *Exons ; Humans ; *Mutation ; *Proto-Oncogenes ; *Transcription, Genetic ; *Translocation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...