ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-04-04
    Description: Lung cancer is the most common cause of cancer death worldwide, with over one million cases annually. To identify genetic factors that modify disease risk, we conducted a genome-wide association study by analysing 317,139 single-nucleotide polymorphisms in 1,989 lung cancer cases and 2,625 controls from six central European countries. We identified a locus in chromosome region 15q25 that was strongly associated with lung cancer (P = 9 x 10(-10)). This locus was replicated in five separate lung cancer studies comprising an additional 2,513 lung cancer cases and 4,752 controls (P = 5 x 10(-20) overall), and it was found to account for 14% (attributable risk) of lung cancer cases. Statistically similar risks were observed irrespective of smoking status or propensity to smoke tobacco. The association region contains several genes, including three that encode nicotinic acetylcholine receptor subunits (CHRNA5, CHRNA3 and CHRNB4). Such subunits are expressed in neurons and other tissues, in particular alveolar epithelial cells, pulmonary neuroendocrine cells and lung cancer cell lines, and they bind to N'-nitrosonornicotine and potential lung carcinogens. A non-synonymous variant of CHRNA5 that induces an amino acid substitution (D398N) at a highly conserved site in the second intracellular loop of the protein is among the markers with the strongest disease associations. Our results provide compelling evidence of a locus at 15q25 predisposing to lung cancer, and reinforce interest in nicotinic acetylcholine receptors as potential disease candidates and chemopreventative targets.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hung, Rayjean J -- McKay, James D -- Gaborieau, Valerie -- Boffetta, Paolo -- Hashibe, Mia -- Zaridze, David -- Mukeria, Anush -- Szeszenia-Dabrowska, Neonilia -- Lissowska, Jolanta -- Rudnai, Peter -- Fabianova, Eleonora -- Mates, Dana -- Bencko, Vladimir -- Foretova, Lenka -- Janout, Vladimir -- Chen, Chu -- Goodman, Gary -- Field, John K -- Liloglou, Triantafillos -- Xinarianos, George -- Cassidy, Adrian -- McLaughlin, John -- Liu, Geoffrey -- Narod, Steven -- Krokan, Hans E -- Skorpen, Frank -- Elvestad, Maiken Bratt -- Hveem, Kristian -- Vatten, Lars -- Linseisen, Jakob -- Clavel-Chapelon, Francoise -- Vineis, Paolo -- Bueno-de-Mesquita, H Bas -- Lund, Eiliv -- Martinez, Carmen -- Bingham, Sheila -- Rasmuson, Torgny -- Hainaut, Pierre -- Riboli, Elio -- Ahrens, Wolfgang -- Benhamou, Simone -- Lagiou, Pagona -- Trichopoulos, Dimitrios -- Holcatova, Ivana -- Merletti, Franco -- Kjaerheim, Kristina -- Agudo, Antonio -- Macfarlane, Gary -- Talamini, Renato -- Simonato, Lorenzo -- Lowry, Ray -- Conway, David I -- Znaor, Ariana -- Healy, Claire -- Zelenika, Diana -- Boland, Anne -- Delepine, Marc -- Foglio, Mario -- Lechner, Doris -- Matsuda, Fumihiko -- Blanche, Helene -- Gut, Ivo -- Heath, Simon -- Lathrop, Mark -- Brennan, Paul -- G9900432/Medical Research Council/United Kingdom -- R01 CA092039/CA/NCI NIH HHS/ -- England -- Nature. 2008 Apr 3;452(7187):633-7. doi: 10.1038/nature06885.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉International Agency for Research on Cancer (IARC), Lyon 69008, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18385738" target="_blank"〉PubMed〈/a〉
    Keywords: Chromosomes, Human, Pair 15/*genetics ; Europe ; Genetic Predisposition to Disease/*genetics ; Genotype ; Humans ; Lung Neoplasms/*genetics ; Odds Ratio ; Polymorphism, Single Nucleotide/genetics ; Protein Subunits/*genetics ; Receptors, Nicotinic/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1996-04-26
    Description: Deficiencies in mismatch repair have been linked to a common cancer predisposition syndrome in humans, hereditary nonpolyposis colorectal cancer (HNPCC), and a subset of sporadic cancers. Here, several mismatch repair-deficient tumor cell lines and HNPCC-derived lymphoblastoid cell lines were found to be deficient in an additional DNA repair process termed transcription-coupled repair (TCR). The TCR defect was corrected in a mutant cell line whose mismatch repair deficiency had been corrected by chromosome transfer. Thus, the connection between excision repair and mismatch repair previously described in Escherichia coli extends to humans. These results imply that deficiencies in TCR and exposure to carcinogens present in the environment may contribute to the etiology of tumors associated with genetic defects in mismatch repair.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mellon, I -- Rajpal, D K -- Koi, M -- Boland, C R -- Champe, G N -- GM45535-03/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Apr 26;272(5261):557-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Program in Toxicology, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8614807" target="_blank"〉PubMed〈/a〉
    Keywords: *Adenosine Triphosphatases ; Colorectal Neoplasms, Hereditary Nonpolyposis/*genetics ; DNA Damage ; *DNA Repair ; *DNA Repair Enzymes ; *DNA-Binding Proteins ; Humans ; Lymphocytes/cytology ; MutS Homolog 2 Protein ; *Mutation ; Neoplasm Proteins/genetics ; Neoplasms/*genetics ; Proto-Oncogene Proteins/genetics ; Pyrimidine Dimers/metabolism ; Tetrahydrofolate Dehydrogenase/genetics ; *Transcription, Genetic ; Tumor Cells, Cultured ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1982-06-11
    Description: Serums from 90 individuals from three areas in Sudan were tested for inhibitory activity against cultures of Plasmodium falciparum. In addition to inhibitory activity against merozoite invasion, all of the serums demonstrated, in varying degrees, the ability to retard intraerythrocyte development, leading to crisis forms and parasite deterioration. These retardation factors could be removed by absorption of immune serum with parasite-infected erythrocytes and were demonstrable in purified immunoglobulin fractions. Serum from donors in hypoendemic Khartoum did not retard parasite development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jensen, J B -- Boland, M T -- Akood, M -- AI-16312/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1982 Jun 11;216(4551):1230-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7043736" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies ; Antigens ; Cells, Cultured ; Erythrocytes/immunology/*parasitology ; Humans ; Immunity ; Malaria/*immunology ; Plasmodium falciparum/growth & development/*immunology/physiology ; Sudan
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-03-04
    Description: Inflammation promotes regeneration of injured tissues through poorly understood mechanisms, some of which involve interleukin (IL)-6 family members, the expression of which is elevated in many diseases including inflammatory bowel diseases and colorectal cancer. Here we show in mice and human cells that gp130, a co-receptor for IL-6 cytokines, triggers activation of YAP and Notch, transcriptional regulators that control tissue growth and regeneration, independently of the gp130 effector STAT3. Through YAP and Notch, intestinal gp130 signalling stimulates epithelial cell proliferation, causes aberrant differentiation and confers resistance to mucosal erosion. gp130 associates with the related tyrosine kinases Src and Yes, which are activated on receptor engagement to phosphorylate YAP and induce its stabilization and nuclear translocation. This signalling module is strongly activated upon mucosal injury to promote healing and maintain barrier function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447318/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447318/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Taniguchi, Koji -- Wu, Li-Wha -- Grivennikov, Sergei I -- de Jong, Petrus R -- Lian, Ian -- Yu, Fa-Xing -- Wang, Kepeng -- Ho, Samuel B -- Boland, Brigid S -- Chang, John T -- Sandborn, William J -- Hardiman, Gary -- Raz, Eyal -- Maehara, Yoshihiko -- Yoshimura, Akihiko -- Zucman-Rossi, Jessica -- Guan, Kun-Liang -- Karin, Michael -- CA118165-09/CA/NCI NIH HHS/ -- CA132809/CA/NCI NIH HHS/ -- DP2 OD008469/OD/NIH HHS/ -- EY022611/EY/NEI NIH HHS/ -- R00 DK088589/DK/NIDDK NIH HHS/ -- R01 CA118165/CA/NCI NIH HHS/ -- England -- Nature. 2015 Mar 5;519(7541):57-62. doi: 10.1038/nature14228. Epub 2015 Feb 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratory of Gene Regulation and Signal Transduction, University of California, San Diego, La Jolla, California 92093, USA [2] Departments of Pharmacology and Pathology, University of California, San Diego, La Jolla, California 92093, USA [3] Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan [4] Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan. ; 1] Laboratory of Gene Regulation and Signal Transduction, University of California, San Diego, La Jolla, California 92093, USA [2] Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan. ; 1] Laboratory of Gene Regulation and Signal Transduction, University of California, San Diego, La Jolla, California 92093, USA [2] Fox Chase Cancer Center, Cancer Prevention and Control Program, Philadelphia, Pennsylvania 19111, USA. ; Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA. ; 1] Departments of Pharmacology and Pathology, University of California, San Diego, La Jolla, California 92093, USA [2] Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA [3] Department of Biology, Lamar University, PO Box 10037, Beaumont, Texas 77710, USA. ; 1] Departments of Pharmacology and Pathology, University of California, San Diego, La Jolla, California 92093, USA [2] Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA [3] Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China. ; Laboratory of Gene Regulation and Signal Transduction, University of California, San Diego, La Jolla, California 92093, USA. ; Department of Medicine, VA San Diego Healthcare System, San Diego, California 92161, USA. ; Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA. ; 1] Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA [2] CSRC and BIMRC, San Diego State University, San Diego, California 92182, USA. ; Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan. ; 1] Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan [2] Japan Science and Technology Agency, CREST, Tokyo 102-0076, Japan. ; 1] Inserm, UMR 1162, Genomique fonctionnelle des tumeurs solides, IUH, Paris 75010, France [2] Universite Paris Descartes, Labex Immuno-oncology, Sorbonne Paris Cite, Faculte de Medicine, Paris 75006, France. ; 1] Departments of Pharmacology and Pathology, University of California, San Diego, La Jolla, California 92093, USA [2] Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA. ; 1] Laboratory of Gene Regulation and Signal Transduction, University of California, San Diego, La Jolla, California 92093, USA [2] Departments of Pharmacology and Pathology, University of California, San Diego, La Jolla, California 92093, USA [3] Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25731159" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*metabolism ; Animals ; Body Weight ; Cell Differentiation ; Cell Proliferation ; Cytokine Receptor gp130/*metabolism ; Disease Models, Animal ; Enzyme Activation ; Epithelial Cells/*cytology/metabolism/pathology ; HEK293 Cells ; Homeostasis ; Humans ; Inflammation/*metabolism/pathology ; Inflammatory Bowel Diseases/metabolism/pathology ; Intestinal Mucosa/*cytology/metabolism/pathology ; Mice ; Phosphoproteins/*metabolism ; Proto-Oncogene Proteins c-yes/metabolism ; Proto-Oncogene Proteins pp60(c-src)/*metabolism ; Receptors, Notch/metabolism ; *Regeneration ; Signal Transduction ; Up-Regulation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...