ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-12-24
    Description: Endothelial nitric oxide synthase (eNOS) is critical in the regulation of vascular function, and can generate both nitric oxide (NO) and superoxide (O(2)(*-)), which are key mediators of cellular signalling. In the presence of Ca(2+)/calmodulin, eNOS produces NO, endothelial-derived relaxing factor, from l-arginine (l-Arg) by means of electron transfer from NADPH through a flavin containing reductase domain to oxygen bound at the haem of an oxygenase domain, which also contains binding sites for tetrahydrobiopterin (BH(4)) and l-Arg. In the absence of BH(4), NO synthesis is abrogated and instead O(2)(*-) is generated. While NOS dysfunction occurs in diseases with redox stress, BH(4) repletion only partly restores NOS activity and NOS-dependent vasodilation. This suggests that there is an as yet unidentified redox-regulated mechanism controlling NOS function. Protein thiols can undergo S-glutathionylation, a reversible protein modification involved in cellular signalling and adaptation. Under oxidative stress, S-glutathionylation occurs through thiol-disulphide exchange with oxidized glutathione or reaction of oxidant-induced protein thiyl radicals with reduced glutathione. Cysteine residues are critical for the maintenance of eNOS function; we therefore speculated that oxidative stress could alter eNOS activity through S-glutathionylation. Here we show that S-glutathionylation of eNOS reversibly decreases NOS activity with an increase in O(2)(*-) generation primarily from the reductase, in which two highly conserved cysteine residues are identified as sites of S-glutathionylation and found to be critical for redox-regulation of eNOS function. We show that eNOS S-glutathionylation in endothelial cells, with loss of NO and gain of O(2)(*-) generation, is associated with impaired endothelium-dependent vasodilation. In hypertensive vessels, eNOS S-glutathionylation is increased with impaired endothelium-dependent vasodilation that is restored by thiol-specific reducing agents, which reverse this S-glutathionylation. Thus, S-glutathionylation of eNOS is a pivotal switch providing redox regulation of cellular signalling, endothelial function and vascular tone.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3370391/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3370391/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Chun-An -- Wang, Tse-Yao -- Varadharaj, Saradhadevi -- Reyes, Levy A -- Hemann, Craig -- Talukder, M A Hassan -- Chen, Yeong-Renn -- Druhan, Lawrence J -- Zweier, Jay L -- K99 HL103846/HL/NHLBI NIH HHS/ -- K99 HL103846-02/HL/NHLBI NIH HHS/ -- R01 HL038324/HL/NHLBI NIH HHS/ -- R01 HL038324-20/HL/NHLBI NIH HHS/ -- R01 HL063744/HL/NHLBI NIH HHS/ -- R01 HL063744-09/HL/NHLBI NIH HHS/ -- R01HL103846/HL/NHLBI NIH HHS/ -- R01HL38324/HL/NHLBI NIH HHS/ -- R01HL63744/HL/NHLBI NIH HHS/ -- R01HL65608/HL/NHLBI NIH HHS/ -- R01HL83237/HL/NHLBI NIH HHS/ -- England -- Nature. 2010 Dec 23;468(7327):1115-8. doi: 10.1038/nature09599.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, Ohio State University, Columbus, Ohio 43210, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21179168" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cattle ; Cells, Cultured ; Dithiothreitol/pharmacology ; Endothelial Cells/metabolism ; Endothelium, Vascular/*metabolism ; Glutathione/*metabolism ; Humans ; Male ; Mercaptoethanol/pharmacology ; Mutation ; Nitric Oxide Synthase Type III/genetics/*metabolism ; Oxidation-Reduction ; Rats ; Rats, Inbred SHR ; Rats, Inbred WKY ; Rats, Sprague-Dawley ; Reducing Agents/pharmacology ; Signal Transduction ; Vasodilation/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1991-05-17
    Description: The aryl hydrocarbon (Ah) receptor binds various environmental pollutants, such as polycyclic aromatic hydrocarbons, heterocyclic amines, and polychlorinated aromatic compounds (dioxins, dibenzofurans, and biphenyls), and mediates the carcinogenic effects of these agents. The complementary DNA and part of the gene for an 87-kilodalton human protein that is necessary for Ah receptor function have been cloned. The protein is not the ligand-binding subunit of the receptor but is a factor that is required for the ligand-binding subunit to translocate from the cytosol to the nucleus after binding ligand. The requirement for this factor distinguishes the Ah receptor from the glucocorticoid receptor, to which the Ah receptor has been presumed to be similar. Two portions of the 87-kilodalton protein share sequence similarities with two Drosophila proteins, Per and Sim. Another segment of the protein shows conformity to the consensus sequence for the basic helix-loop-helix motif found in proteins that bind DNA as homodimers or heterodimers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoffman, E C -- Reyes, H -- Chu, F F -- Sander, F -- Conley, L H -- Brooks, B A -- Hankinson, O -- CA 16048/CA/NCI NIH HHS/ -- CA 28868/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1991 May 17;252(5008):954-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of California, Los Angeles 90024.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1852076" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Aryl Hydrocarbon Receptor Nuclear Translocator ; Base Sequence ; Cell Line ; Cell Nucleus/metabolism ; Cloning, Molecular ; Cytosol/metabolism ; *DNA-Binding Proteins ; Humans ; Macromolecular Substances ; Molecular Sequence Data ; Molecular Weight ; Oligonucleotide Probes ; Proteins/*genetics/metabolism ; RNA, Messenger/genetics ; Receptors, Aryl Hydrocarbon ; Receptors, Drug/genetics/*metabolism ; Sequence Homology, Nucleic Acid ; Tetrachlorodibenzodioxin/*metabolism ; *Transcription Factors ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1992-05-22
    Description: The Ah (dioxin) receptor binds a number of widely disseminated environmental pollutants, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and polycyclic aromatic hydrocarbons, and mediates their carcinogenic effects. The ligand-bound receptor activates Cyp 1a1 gene transcription through interaction with specific DNA sequences, termed xenobiotic responsive elements (XREs). The Ah receptor nuclear translocator protein (Arnt) is required for Ah receptor function. Arnt is now shown to be a structural component of the XRE binding form of the Ah receptor. Furthermore, Arnt and the ligand-binding subunit of the receptor were extracted as a complex from the nuclei of cells treated with ligand. Arnt contains a basic helix-loop-helix motif, which may be responsible for interacting with both the XRE and the ligand-binding subunit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reyes, H -- Reisz-Porszasz, S -- Hankinson, O -- CA 28868/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1992 May 22;256(5060):1193-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of California, Los Angeles 90024.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1317062" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies ; Aryl Hydrocarbon Receptor Nuclear Translocator ; Base Sequence ; Cell Line ; Cells, Cultured ; Cytochrome P-450 Enzyme System/genetics ; DNA/genetics/metabolism ; DNA-Binding Proteins/genetics/isolation & purification/*metabolism ; Humans ; Hydrocarbons/metabolism ; Mice ; Molecular Sequence Data ; Oligodeoxyribonucleotides ; Proteins/genetics/isolation & purification/*metabolism ; Receptors, Aryl Hydrocarbon ; Receptors, Drug/genetics/isolation & purification/*metabolism ; Recombinant Proteins/isolation & purification/metabolism ; Tetrachlorodibenzodioxin/metabolism ; *Transcription Factors ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1990-03-16
    Description: Major epidemic outbreaks of viral hepatitis in underdeveloped countries result from a type of non-A, non-B hepatitis distinct from the parenterally transmitted form. The viral agent responsible for this form of epidemic, or enterically transmitted non-A, non-B hepatitis (ET-NANBH), has been serially transmitted in cynomolgus macaques (cynos) and has resulted in typical elevation in liver enzymes and the detection of characteristic virus-like particles (VLPs) in both feces and bile. Infectious bile was used for the construction of recombinant complementary DNA libraries. One clone, ET1.1, was exogenous to uninfected human and cyno genomic liver DNA, as well as to genomic DNA from infected cyno liver. ET1.1 did however, hybridize to an approximately 7.6-kilobase RNA species present only in infected cyno liver. The translated nucleic acid sequence of a portion of ET1.1 had a consensus amino acid motif consistent with an RNA-directed RNA polymerase; this enzyme is present in all positive strand RNA viruses. Furthermore, ET1.1 specifically identified similar sequences in complementary DNA prepared from infected human fecal samples collected from five geographically distinct ET-NANBH outbreaks. Therefore, ET1.1 represents a portion of the genome of the principal viral agent, to be named hepatitis E virus, which is responsible for epidemic outbreaks of ET-NANBH.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reyes, G R -- Purdy, M A -- Kim, J P -- Luk, K C -- Young, L M -- Fry, K E -- Bradley, D W -- New York, N.Y. -- Science. 1990 Mar 16;247(4948):1335-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Virology Department, Genelabs Incorporated, Redwood City, CA 94063.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2107574" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cloning, Molecular ; DNA/genetics ; Hepatitis E/*microbiology ; Hepatitis Viruses/*genetics ; Hepatitis, Viral, Human/*microbiology ; Humans ; Macaca fascicularis ; Molecular Sequence Data ; Polymerase Chain Reaction ; RNA Viruses/genetics ; RNA, Viral/genetics ; Restriction Mapping
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-08-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ormsby, Christopher E -- Reyes-Teran, Gustavo -- New York, N.Y. -- Science. 2009 Aug 28;325(5944):1072; author reply 1072-3. doi: 10.1126/science.325_1072a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19713511" target="_blank"〉PubMed〈/a〉
    Keywords: Access to Information/*ethics ; *Authorship ; Conflict of Interest ; Government Agencies/*ethics ; Guidelines as Topic ; Humans ; *Influenza A Virus, H1N1 Subtype ; Influenza, Human/*epidemiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-09-01
    Description: Soil microbiota represent one of the ancient evolutionary origins of antibiotic resistance and have been proposed as a reservoir of resistance genes available for exchange with clinical pathogens. Using a high-throughput functional metagenomic approach in conjunction with a pipeline for the de novo assembly of short-read sequence data from functional selections (termed PARFuMS), we provide evidence for recent exchange of antibiotic resistance genes between environmental bacteria and clinical pathogens. We describe multidrug-resistant soil bacteria containing resistance cassettes against five classes of antibiotics (beta-lactams, aminoglycosides, amphenicols, sulfonamides, and tetracyclines) that have perfect nucleotide identity to genes from diverse human pathogens. This identity encompasses noncoding regions as well as multiple mobilization sequences, offering not only evidence of lateral exchange but also a mechanism by which antibiotic resistance disseminates.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070369/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070369/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Forsberg, Kevin J -- Reyes, Alejandro -- Wang, Bin -- Selleck, Elizabeth M -- Sommer, Morten O A -- Dantas, Gautam -- T32 GM007067/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Aug 31;337(6098):1107-11. doi: 10.1126/science.1220761.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22936781" target="_blank"〉PubMed〈/a〉
    Keywords: Aminoglycosides/pharmacology ; Anti-Bacterial Agents/*pharmacology ; Bacteria/*drug effects/*genetics/pathogenicity ; Base Sequence ; Drug Resistance, Multiple, Bacterial/*genetics ; High-Throughput Screening Assays ; Humans ; Metagenome/*drug effects/*genetics ; Metagenomics ; Molecular Sequence Data ; *Soil Microbiology ; Sulfonamides/pharmacology ; Tetracyclines/pharmacology ; beta-Lactams/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-07-16
    Description: Viral diversity and life cycles are poorly understood in the human gut and other body habitats. Phages and their encoded functions may provide informative signatures of a human microbiota and of microbial community responses to various disturbances, and may indicate whether community health or dysfunction is manifest after apparent recovery from a disease or therapeutic intervention. Here we report sequencing of the viromes (metagenomes) of virus-like particles isolated from faecal samples collected from healthy adult female monozygotic twins and their mothers at three time points over a one-year period. We compared these data sets with data sets of sequenced bacterial 16S ribosomal RNA genes and total-faecal-community DNA. Co-twins and their mothers share a significantly greater degree of similarity in their faecal bacterial communities than do unrelated individuals. In contrast, viromes are unique to individuals regardless of their degree of genetic relatedness. Despite remarkable interpersonal variations in viromes and their encoded functions, intrapersonal diversity is very low, with 〉95% of virotypes retained over the period surveyed, and with viromes dominated by a few temperate phages that exhibit remarkable genetic stability. These results indicate that a predatory viral-microbial dynamic, manifest in a number of other characterized environmental ecosystems, is notably absent in the very distal intestine.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2919852/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2919852/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reyes, Alejandro -- Haynes, Matthew -- Hanson, Nicole -- Angly, Florent E -- Heath, Andrew C -- Rohwer, Forest -- Gordon, Jeffrey I -- DK78669/DK/NIDDK NIH HHS/ -- P01 DK078669/DK/NIDDK NIH HHS/ -- P01 DK078669-03S1/DK/NIDDK NIH HHS/ -- England -- Nature. 2010 Jul 15;466(7304):334-8. doi: 10.1038/nature09199.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, Missouri 63108, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20631792" target="_blank"〉PubMed〈/a〉
    Keywords: Anaerobiosis ; Bacteria/classification/genetics/isolation & purification/metabolism ; Bacteriophages/classification/enzymology/genetics/isolation & purification ; DNA, Viral/analysis/genetics ; Feces/*microbiology/*virology ; Female ; Genes, Bacterial/genetics ; Genome, Bacterial/genetics ; Genome, Viral/genetics ; Heredity/genetics ; Humans ; Intestines/microbiology/virology ; *Metagenome/genetics ; *Mothers ; Prophages/classification/genetics/isolation & purification ; RNA, Ribosomal, 16S/analysis/genetics ; Sequence Analysis, DNA ; Time Factors ; *Twins, Monozygotic/genetics ; Viral Proteins/analysis/genetics/metabolism ; Viruses/classification/*genetics/*isolation & purification
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-12-14
    Description: Pore-forming toxins are critical virulence factors for many bacterial pathogens and are central to Staphylococcus aureus-mediated killing of host cells. S. aureus encodes pore-forming bi-component leukotoxins that are toxic towards neutrophils, but also specifically target other immune cells. Despite decades since the first description of staphylococcal leukocidal activity, the host factors responsible for the selectivity of leukotoxins towards different immune cells remain unknown. Here we identify the human immunodeficiency virus (HIV) co-receptor CCR5 as a cellular determinant required for cytotoxic targeting of subsets of myeloid cells and T lymphocytes by the S. aureus leukotoxin ED (LukED). We further demonstrate that LukED-dependent cell killing is blocked by CCR5 receptor antagonists, including the HIV drug maraviroc. Remarkably, CCR5-deficient mice are largely resistant to lethal S. aureus infection, highlighting the importance of CCR5 targeting in S. aureus pathogenesis. Thus, depletion of CCR5(+) leukocytes by LukED suggests a new immune evasion mechanism of S. aureus that can be therapeutically targeted.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536884/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536884/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alonzo, Francis 3rd -- Kozhaya, Lina -- Rawlings, Stephen A -- Reyes-Robles, Tamara -- DuMont, Ashley L -- Myszka, David G -- Landau, Nathaniel R -- Unutmaz, Derya -- Torres, Victor J -- F32 AI098395/AI/NIAID NIH HHS/ -- R01 AI065303/AI/NIAID NIH HHS/ -- R01-AI065303/AI/NIAID NIH HHS/ -- R21 AI087973/AI/NIAID NIH HHS/ -- R21-AI087973/AI/NIAID NIH HHS/ -- R42-MH084372-02A1/MH/NIMH NIH HHS/ -- R56-AI091856-01A1/AI/NIAID NIH HHS/ -- England -- Nature. 2013 Jan 3;493(7430):51-5. doi: 10.1038/nature11724. Epub 2012 Dec 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23235831" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Toxins/*metabolism ; CCR5 Receptor Antagonists ; Cell Death ; Cells, Cultured ; Dendritic Cells/cytology/immunology/metabolism ; Exotoxins/*metabolism ; Female ; Humans ; Immune Evasion ; Immunologic Memory ; Jurkat Cells ; Mice ; Myeloid Cells/cytology/immunology/metabolism ; Receptors, CCR5/*metabolism ; Staphylococcus aureus/immunology/*pathogenicity ; T-Lymphocytes/cytology/immunology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-04-29
    Description: Innate immune cells must be able to distinguish between direct binding to microbes and detection of components shed from the surface of microbes located at a distance. Dectin-1 (also known as CLEC7A) is a pattern-recognition receptor expressed by myeloid phagocytes (macrophages, dendritic cells and neutrophils) that detects beta-glucans in fungal cell walls and triggers direct cellular antimicrobial activity, including phagocytosis and production of reactive oxygen species (ROS). In contrast to inflammatory responses stimulated upon detection of soluble ligands by other pattern-recognition receptors, such as Toll-like receptors (TLRs), these responses are only useful when a cell comes into direct contact with a microbe and must not be spuriously activated by soluble stimuli. In this study we show that, despite its ability to bind both soluble and particulate beta-glucan polymers, Dectin-1 signalling is only activated by particulate beta-glucans, which cluster the receptor in synapse-like structures from which regulatory tyrosine phosphatases CD45 and CD148 (also known as PTPRC and PTPRJ, respectively) are excluded (Supplementary Fig. 1). The 'phagocytic synapse' now provides a model mechanism by which innate immune receptors can distinguish direct microbial contact from detection of microbes at a distance, thereby initiating direct cellular antimicrobial responses only when they are required.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3084546/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3084546/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goodridge, Helen S -- Reyes, Christopher N -- Becker, Courtney A -- Katsumoto, Tamiko R -- Ma, Jun -- Wolf, Andrea J -- Bose, Nandita -- Chan, Anissa S H -- Magee, Andrew S -- Danielson, Michael E -- Weiss, Arthur -- Vasilakos, John P -- Underhill, David M -- AI066120/AI/NIAID NIH HHS/ -- AI071116/AI/NIAID NIH HHS/ -- R01 AI066120/AI/NIAID NIH HHS/ -- R01 AI066120-05/AI/NIAID NIH HHS/ -- R01 AI071116/AI/NIAID NIH HHS/ -- R01 AI071116-04/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Apr 28;472(7344):471-5. doi: 10.1038/nature10071.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉IBD and Immunobiology Research Institute, 8700 Beverly Boulevard, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21525931" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD45/deficiency/metabolism ; Cell Wall/chemistry/immunology ; Cells, Cultured ; Humans ; Immunity, Innate/*immunology ; Immunological Synapses/*immunology ; Lectins, C-Type ; Macrophages/immunology ; Membrane Proteins/deficiency/genetics/*immunology ; Mice ; *Models, Immunological ; Nerve Tissue Proteins/deficiency/genetics/*immunology ; Phagocytosis/*immunology ; Reactive Oxygen Species/metabolism ; Receptor-Like Protein Tyrosine Phosphatases, Class 3/deficiency/metabolism ; Saccharomyces cerevisiae/chemistry/immunology ; Signal Transduction/immunology ; Solubility ; beta-Glucans/chemistry/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-06-23
    Description: Tumour suppressor genes encode a broad class of molecules whose mutational attenuation contributes to malignant progression. In the canonical situation, the tumour suppressor is completely inactivated through a two-hit process involving a point mutation in one allele and chromosomal deletion of the other. Here, to identify tumour suppressor genes in lymphoma, we screen a short hairpin RNA library targeting genes deleted in human lymphomas. We functionally identify those genes whose suppression promotes tumorigenesis in a mouse lymphoma model. Of the nine tumour suppressors we identified, eight correspond to genes occurring in three physically linked 'clusters', suggesting that the common occurrence of large chromosomal deletions in human tumours reflects selective pressure to attenuate multiple genes. Among the new tumour suppressors are adenosylmethionine decarboxylase 1 (AMD1) and eukaryotic translation initiation factor 5A (eIF5A), two genes associated with hypusine, a unique amino acid produced as a product of polyamine metabolism through a highly conserved pathway. Through a secondary screen surveying the impact of all polyamine enzymes on tumorigenesis, we establish the polyamine-hypusine axis as a new tumour suppressor network regulating apoptosis. Unexpectedly, heterozygous deletions encompassing AMD1 and eIF5A often occur together in human lymphomas and co-suppression of both genes promotes lymphomagenesis in mice. Thus, some tumour suppressor functions can be disabled through a two-step process targeting different genes acting in the same pathway.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3530829/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3530829/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scuoppo, Claudio -- Miething, Cornelius -- Lindqvist, Lisa -- Reyes, Jose -- Ruse, Cristian -- Appelmann, Iris -- Yoon, Seungtai -- Krasnitz, Alexander -- Teruya-Feldstein, Julie -- Pappin, Darryl -- Pelletier, Jerry -- Lowe, Scott W -- CA087497/CA/NCI NIH HHS/ -- CA148532/CA/NCI NIH HHS/ -- MOP-106530/Canadian Institutes of Health Research/Canada -- P01 CA013106/CA/NCI NIH HHS/ -- P01 CA087497/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Jul 12;487(7406):244-8. doi: 10.1038/nature11126.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Watson School of Biological Sciences, Cold Spring Harbor Laboratory, New York 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22722845" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line, Tumor ; Disease Models, Animal ; Female ; Gene Deletion ; Gene Regulatory Networks ; Genetic Testing ; Humans ; Lymphoma, B-Cell/*genetics/physiopathology ; Lysine/*analogs & derivatives/chemistry ; Mice ; Mice, Inbred C57BL ; Polyamines/*chemistry ; RNA, Small Interfering/genetics/metabolism ; Reproducibility of Results ; Tumor Suppressor Proteins/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...