ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-12-08
    Description: The molecular mechanisms that achieve homeostatic stabilization of neural function remain largely unknown. To better understand how neural function is stabilized during development and throughout life, we used an electrophysiology-based forward genetic screen and assessed the function of more than 250 neuronally expressed genes for a role in the homeostatic modulation of synaptic transmission in Drosophila. This screen ruled out the involvement of numerous synaptic proteins and identified a critical function for dysbindin, a gene linked to schizophrenia in humans. We found that dysbindin is required presynaptically for the retrograde, homeostatic modulation of neurotransmission, and functions in a dose-dependent manner downstream or independently of calcium influx. Thus, dysbindin is essential for adaptive neural plasticity and may link altered homeostatic signaling with a complex neurological disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3063306/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3063306/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dickman, Dion K -- Davis, Graeme W -- NS39313/NS/NINDS NIH HHS/ -- R01 NS039313/NS/NINDS NIH HHS/ -- R01 NS039313-12/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2009 Nov 20;326(5956):1127-30. doi: 10.1126/science.1179685.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965435" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Calcium Channels/genetics/metabolism ; Carrier Proteins/genetics ; Drosophila Proteins/genetics/metabolism ; Drosophila melanogaster/*genetics/*physiology ; Dystrophin-Associated Proteins ; Genes, Insect ; Glutamic Acid/metabolism ; Homeostasis ; Humans ; Mutation ; Neuromuscular Junction/physiology ; Neuronal Plasticity ; Schizophrenia/genetics ; Synapses/*physiology/ultrastructure ; *Synaptic Transmission ; Synaptic Vesicles/metabolism ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-04-18
    Description: The Caenorhabditis elegans von Hippel-Lindau tumor suppressor homolog VHL-1 is a cullin E3 ubiquitin ligase that negatively regulates the hypoxic response by promoting ubiquitination and degradation of the hypoxic response transcription factor HIF-1. Here, we report that loss of VHL-1 significantly increased life span and enhanced resistance to polyglutamine and beta-amyloid toxicity. Deletion of HIF-1 was epistatic to VHL-1, indicating that HIF-1 acts downstream of VHL-1 to modulate aging and proteotoxicity. VHL-1 and HIF-1 control longevity by a mechanism distinct from both dietary restriction and insulin-like signaling. These findings define VHL-1 and the hypoxic response as an alternative longevity and protein homeostasis pathway.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2737476/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2737476/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mehta, Ranjana -- Steinkraus, Katherine A -- Sutphin, George L -- Ramos, Fresnida J -- Shamieh, Lara S -- Huh, Alexander -- Davis, Christina -- Chandler-Brown, Devon -- Kaeberlein, Matt -- 1R01AG031108-01/AG/NIA NIH HHS/ -- P30AG013280/AG/NIA NIH HHS/ -- R01 AG031108/AG/NIA NIH HHS/ -- R01 AG031108-01A1/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2009 May 29;324(5931):1196-8. doi: 10.1126/science.1173507. Epub 2009 Apr 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19372390" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/*physiology ; Amyloid beta-Peptides/toxicity ; Animals ; Caenorhabditis elegans/genetics/metabolism/*physiology ; Caenorhabditis elegans Proteins/genetics/*metabolism ; Caloric Restriction ; Cullin Proteins/genetics/*metabolism ; Female ; Fertility ; Gene Expression Regulation ; Homeostasis ; Insulin/metabolism ; Longevity/physiology ; Male ; Models, Animal ; Oxygen/*physiology ; Peptides/toxicity ; Proteasome Endopeptidase Complex/*metabolism ; RNA Interference ; Receptor, Insulin/genetics/metabolism ; Signal Transduction ; Transcription Factors/genetics/*metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...