ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: The transport, degassing and atmospheric release of halogens from active volcanism on Earth have been the 12 focus of increasing interest over the last few decades, and have recently been the subject of the 1st workshop 13 on “Halogens in volcanic systems and their environmental impacts” that was held in December of 2007 at 14 Yosemite Lodge in Yosemite National Park, California. As an introduction to this Chemical Geology special 15 issue, collecting contributions from many of the participants at the workshop, we review here recent 16 advances in this field, including experimental and theoretical investigations of halogen behaviour in volcanic 17 and related magmatic systems. We discuss previous research on several aspects of halogen geochemistry, 18 including halogen abundances in the mantle and magmas on Earth; the effects of halogens on phase 19 equilibria and melt viscosities; their partitioning between melt and fluid phase(s) upon decompression, 20 cooling and crystallisation of magmas in the ^ Earth's crust; and their final atmospheric release as volcanic 21 gases. The role of halogens in the genesis of hydrothermal systems and in the transport of ore-forming metals 22 is also reviewed, and we discuss our current understanding of atmospheric processing of volcanic halogens in 23 both the troposphere and stratosphere, and their consequent impacts. In spite of these recent advancements, 24 our current understanding of halogen geochemistry at active volcanoes is still far too fragmentary, and the 25 key questions that require answers from future research are summarised in our conclusions.
    Description: PRIN 2008 and DPC-INGV 1381 2007-2009 grants; NSERC Dis- 1382 covery grant; NSF award EAR 0308866
    Description: In press
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: Halogens ; Volcanic gas ; Ore deposits ; Atmospheric effects ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The transport, degassing and atmospheric release of halogens from active volcanism on Earth have been the focus of increasing interest over the last few decades, and have recently been the subject of the 1st workshop on “Halogens in volcanic systems and their environmental impacts” that was held in December of 2007 at Yosemite Lodge in Yosemite National Park, California. As an introduction to this Chemical Geology special issue, collecting contributions from many of the participants at the workshop, we review here recent advances in this field, including experimental and theoretical investigations of halogen behaviour in volcanic and related magmatic systems. We discuss previous research on several aspects of halogen geochemistry, including halogen abundances in the mantle and magmas on Earth; the effects of halogens on phase equilibria and melt viscosities; their partitioning between melt and fluid phase(s) upon decompression, cooling and crystallisation of magmas in the Earth's crust; and their final atmospheric release as volcanic gases. The role of halogens in the genesis of hydrothermal systems and in the transport of ore-forming metals is also reviewed, and we discuss our current understanding of atmospheric processing of volcanic halogens in both the troposphere and stratosphere, and their consequent impacts. In spite of these recent advancements, our current understanding of halogen geochemistry at active volcanoes is still far too fragmentary, and the key questions that require answers from future research are summarised in our conclusions.
    Description: Published
    Description: 1-18
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Halogens ; Magmatic fluids ; Ore deposits ; Volcanic degassing ; Volcanic gas ; Atmospheric effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The diffusion of the halogens fluorine, chlorine, and bromine was measured in a hawaiitic melt from Mt. Etna at 500 MPa and 1.0 GPa, 1250 to 1450 ºC at anhydrous conditions; the diffusion of F and Cl in the melt was also studied with about 3 wt% of dissolved water. Experiments were performed using the diffusion-couple technique in a piston cylinder. Most experiments were performed with only one halogen diffusing between the halogen-enriched and halogen-poor halves of the diffusion couple, but a few experiments with a mixture of halogens (F, Cl, Br) were also performed in order to investigate the possibility of interactions between the halogens during diffusion. Fluorine and chlorine diffusivity show a very similar behavior, slightly diverging at low temperature. Bromine diffusion is a factor of about 2 to 5 lower than the other halogens in this study. Diffusion coefficients for fluorine range between 2.3x10−11 and 1.4x10−10 m2s−1, for chlorine between 1.1x10−11 and 1.3x10−10 and for bromine between 9.4x10−12 and 6.8x10−11 m2s−1. No pressure effect was detected at the conditions investigated. In experiments involving mixed halogens, the diffusivities appear to decrease slightly (by a factor of ~ 3), and are more uniform among the three elements. However, activation energies for diffusion do not appear to differ between experiments with individual halogens or when they are all mixed together. The effect of water increases the diffusion coefficients of F and Cl by no more than a factor of 3 compared to the anhydrous melt (DF = 4.0x10−11 to 1.6x10−10 m2s−1; DCl = 3.0x10−11 to 1.9x10−10 m2s−1). Comparing our results to the diffusion coefficients of other volatiles in nominally dry basaltic melts, halogen diffusivities are about one order of magnitude lower than H2O, similar to CO2, and a factor of ~5 higher than S. The contrasting volatile diffusivities may affect the variable extent of volatile degassing upon melt depressurization and vesiculation, and can help our understanding of the compositions of rapidly grown magmatic bubbles.
    Description: NSERC Discovery grant INGV-DPC 2004-2006 Projects (V3_6 – Etna)
    Description: Published
    Description: 3570-3580
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: Diffusion ; Halogens ; Basalt ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Diffusion of halogens has the potential to influence petrogenetic processes in magma chambers and conduit degassing processes. This contribution reviews our current state of knowledge concerning halogen diffusion and the influence of halogens on the diffusion of major elements in silicate melts. The addition of halogens to silicate melts at common, natural concentration levels will have little effect on the diffusion of major elements. However, the differences between the diffusivity of water, the diffusivities of halogens, and the diffusivity of sulfur are significant enough that during melt inclusion entrapment, or during rapid bubble or crystal growth, diffusive fractionation betweenwater and the halogens, and between halogens and sulfur, are expected to occur and can influence the compositions of melt inclusions, crystals and volcanic gases.
    Description: NSERC Discovery grant to D.R.B
    Description: In press
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: Halogens ; Diffusion ; Magmatic processes ; Volcanic gas ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...