ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earth Resources and Remote Sensing  (16)
  • Geosciences (General)  (3)
  • 1
    Publication Date: 2019-07-12
    Description: Model evaluation and verification are key in improving the usage and applicability of simulation models for real-world applications. In this article, the development and capabilities of a formal system for land surface model evaluation called the Land surface Verification Toolkit (LVT) is described. LVT is designed to provide an integrated environment for systematic land model evaluation and facilitates a range of verification approaches and analysis capabilities. LVT operates across multiple temporal and spatial scales and employs a large suite of in-situ, remotely sensed and other model and reanalysis datasets in their native formats. In addition to the traditional accuracy-based measures, LVT also includes uncertainty and ensemble diagnostics, information theory measures, spatial similarity metrics and scale decomposition techniques that provide novel ways for performing diagnostic model evaluations. Though LVT was originally designed to support the land surface modeling and data assimilation framework known as the Land Information System (LIS), it also supports hydrological data products from other, non-LIS environments. In addition, the analysis of diagnostics from various computational subsystems of LIS including data assimilation, optimization and uncertainty estimation are supported within LVT. Together, LIS and LVT provide a robust end-to-end environment for enabling the concepts of model data fusion for hydrological applications. The evolving capabilities of LVT framework are expected to facilitate rapid model evaluation efforts and aid the definition and refinement of formal evaluation procedures for the land surface modeling community.
    Keywords: Geosciences (General)
    Type: GSFC.JA.5756.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: Data assimilation is being increasingly used to merge remotely sensed land surface variables such as soil moisture, snow and skin temperature with estimates from land models. Its success, however, depends on unbiased model predictions and unbiased observations. Here, a suite of continental-scale, synthetic soil moisture assimilation experiments is used to compare two approaches that address typical biases in soil moisture prior to data assimilation: (i) parameter estimation to calibrate the land model to the climatology of the soil moisture observations, and (ii) scaling of the observations to the model s soil moisture climatology. To enable this research, an optimization infrastructure was added to the NASA Land Information System (LIS) that includes gradient-based optimization methods and global, heuristic search algorithms. The land model calibration eliminates the bias but does not necessarily result in more realistic model parameters. Nevertheless, the experiments confirm that model calibration yields assimilation estimates of surface and root zone soil moisture that are as skillful as those obtained through scaling of the observations to the model s climatology. Analysis of innovation diagnostics underlines the importance of addressing bias in soil moisture assimilation and confirms that both approaches adequately address the issue.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.JA.5386.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry (2006) and wet (2007) land surface conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through the use of a new optimization and uncertainty estimation module in NASA's Land Information System (LIS-OPT/UE), whereby parameter sets are calibrated in the Noah land surface model and classified according to a land cover and soil type mapping of the observation sites to the full model domain. The impact of calibrated parameters on the a) spinup of the land surface used as initial conditions, and b) heat and moisture states and fluxes of the coupled WRF simulations are then assessed in terms of ambient weather and land-atmosphere coupling along with measures of uncertainty propagation into the forecasts. In addition, the sensitivity of this approach to the period of calibration (dry, wet, average) is investigated. Finally, tradeoffs of computational tractability and scientific validity, and the potential for combining this approach with satellite remote sensing data are also discussed.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.ABS.6719.2012 , Pan-GASS Conference; Sep 10, 2012 - Sep 14, 2012; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: Recent advances in remote sensing technologies have enabled the monitoring and measurement of the Earth's land surface at an unprecedented scale and frequency. The myriad of these land surface observations must be integrated with the state-of-the-art land surface model forecasts using data assimilation to generate spatially and temporally coherent estimates of environmental conditions. These analyses are of critical importance to real-world applications such as agricultural production, water resources management and flood, drought, weather and climate prediction. This need motivated the development of NASA Land Information System (LIS), which is an expert system encapsulating a suite of modeling, computational and data assimilation tools required to address challenging hydrological problems. LIS integrates the use of several community land surface models, use of ground and satellite based observations, data assimilation and uncertainty estimation techniques and high performance computing and data management tools to enable the assessment and prediction of hydrologic conditions at various spatial and temporal scales of interest. This presentation will focus on describing the results, challenges and lessons learned from the use of remote sensing data for improving land surface modeling, within LIS. More specifically, studies related to the improved estimation of soil moisture, snow and land surface temperature conditions through data assimilation will be discussed. The presentation will also address the characterization of uncertainty in the modeling process through Bayesian remote sensing and computational methods.
    Keywords: Earth Resources and Remote Sensing
    Type: International Workshop on Data Assimilation for Operational Hydrological Forecasting and Water Resources Management; Oct 30, 2010 - Nov 04, 2010; Delft; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: NASA's Land Information System (LIS; lis.gsfc.nasa.gov) is a flexible land surface modeling and data assimilation framework developed over the past decade with the goal of integrating satellite- and ground-based observational data products and advanced land surface modeling techniques to produce optimal fields of land surface states and fluxes. LIS features a high performance and flexible design, and operates on an ensemble of land surface models for extension over user-specified regional or global domains. The extensible interfaces of LIS allow the incorporation of new domains, land surface models (LSMs), land surface parameters, meteorological inputs, data assimilation and optimization algorithms. In addition, LIS has also been demonstrated for parameter estimation and uncertainty estimation, and has been coupled to the Weather Research and Forecasting (WRF) mesoscale model. A visiting fellowship is currently underway to implement JULES into LIS and to undertake some fundamental science on the feedbacks between the land surface and the atmosphere. An overview of the LIS system, features, and sample results will be presented in an effort to engage the community in the potential advantages of LIS-JULES for a range of applications. Ongoing efforts to develop a framework for diagnosing land-atmosphere coupling will also be presented using the suite of LSM and PBL schemes available in LIS and WRF along with observations from the U. S .. Southern Great Plains. This methodology provides a potential pathway to study factors controlling local land-atmosphere coupling (LoCo) using the LIS-WRF system, which will serve as a testbed for future experiments to evaluate coupling diagnostics within the community.
    Keywords: Geosciences (General)
    Type: GSFC.OVPR.4924.2011 , ETH Seminar; Sep 25, 2011 - Sep 28, 2011; Zurich; Switzerland
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Several independent measurements of warmseason soil moisture and surface atmospheric variables recorded at the ARM Southern Great Plains (SGP) research facility are used to estimate the terrestrial component of landatmosphere coupling (LAC) strength and its regional uncertainty. The observations reveal substantial variation in coupling strength, as estimated from three soil moisture measurements at a single site, as well as across six other sites having varied soil and land cover types. The observational estimates then serve as references for evaluating SGP terrestrial coupling strength in the Community Atmospheric Model coupled to the Community Land Model. These coupled model components are operated in both a freerunning mode and in a controlled configuration, where the atmospheric and land states are reinitialized daily, so that they do not drift very far from observations. Although the controlled simulation deviates less from the observed surface climate than its freerunning counterpart, the terrestrial LAC in both configurations is much stronger and displays less spatial variability than the SGP observational estimates. Preliminary investigation of vegetation leaf area index (LAI) substituted for soil moisture suggests that the overly strong coupling between model soil moisture and surface atmospheric variables is associated with too much evaporation from bare ground and too little from the vegetation cover. These results imply that model surface characteristics such as LAI, as well as the physical parameterizations involved in the coupling of the land and atmospheric components, are likely to be important sources of the problematical LAC behaviors.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN48412 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 122; 21; 11,524-11,548; November 16, 2017
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Evapotranspiration (ET) is a critical component of the Earth's water budget, a critical modulator of land-atmosphere (L-A) interactions, and also plays a crucial role in managing the Earth's energy balance. In this study, the feasibility of generating spatially-continuous daily evaporative fraction (EF) and ET from minimal remotely-sensed and meteorological inputs in a trapezoidal framework is demonstrated. A total of four variables, Normalized Difference Vegetation Index (NDVI), Land surface temperature (T(sub s)), gridded daily average temperature (T(sub a)) and elevation (z) are required to estimate EF. Then, ET can be estimated with the available soil heat flux (G) and net radiation (Rn) data. Firstly, the crucial model variable, T(sub s)-T(sub a), is examined how well it characterizes the variation in EF using in situ data recorded at two eddy correlation flux towers in Southern Great Plains, U.S.A. in 2011. Next, accuracy of satellite-based T(sub s) are compared to ground-based T(sub s). Finally, EF and ET estimates are validated. The results reveal that the model performed satisfactorily in modeling EF and ET variation at winter wheat and deciduous forest during the high evaporative months. Even though the model works best with the observed MODIS-T(sub s) as opposed to temporally interpolated T(sub s), results obtained from interpolated T(sub s) are able to close the gaps with reasonable accuracy. Due to the fact that T(sub s)-T(sub a), is not a good indicator of EF outside the growing season when deciduous forest is dormant, potential improvements to the model are proposed to improve accuracy in EF and ET estimates at the expense of adding more variables.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN46896 , IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (ISSN 1939-1404) (e-ISSN 2151-1535); 11; 1; 12-23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: We confront four model systems in three configurations (LSM, LSM+GCM, and reanalysis) with global flux tower observations to validate states, surface fluxes, and coupling indices between land and atmosphere. Models clearly under-represent the feedback of surface fluxes on boundary layer properties (the atmospheric leg of land-atmosphere coupling), and may over-represent the connection between soil moisture and surface fluxes (the terrestrial leg). Models generally under-represent spatial and temporal variability relative to observations, which is at least partially an artifact of the differences in spatial scale between model grid boxes and flux tower footprints. All models bias high in near-surface humidity and downward shortwave radiation, struggle to represent precipitation accurately, and show serious problems in reproducing surface albedos. These errors create challenges for models to partition surface energy properly and errors are traceable through the surface energy and water cycles. The spatial distribution of the amplitude and phase of annual cycles (first harmonic) are generally well reproduced, but the biases in means tend to reflect in these amplitudes. Interannual variability is also a challenge for models to reproduce. Our analysis illuminates targets for coupled land-atmosphere model development, as well as the value of long-term globally-distributed observational monitoring.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN50582 , Journal of Hydrometeorology (ISSN 1525-755X) (e-ISSN 1575-7541); 19; 2; 375–392
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-09-11
    Description: Heterogeneity in warm-season (May-August) land-atmosphere (LA) coupling is quantified with the long-time, multiple-station measurements from the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program and the moderate-resolution imaging spectroradiometer (MODIS) satellite remote sensing at the Southern Great Plains (SGP). We examine the coupling strength at 7 additional locations with the same surface type (i.e., pasture/grassland) as the ARM SGP central facility (CF). To simultaneously consider multiple factors and consistently quantify their relative contributions, we apply a multiple linear regression method to correlate the surface evaporative fraction (EF) with near-surface soil moisture (SM) and leaf area index (LAI). The observations show moderate to weak terrestrial segment LA coupling with large heterogeneity across the ARM SGP domain in warm-season. Large spatial variabilities in the contributions from SM and LAI to the EF changes are also found. The coupling heterogeneities appear to be associated with differences in land use, anthropogenic activities, rooting depth, and soil type at different stations. Therefore, the complex LA interactions at the SGP cannot be well represented by those at the CF/E13 based on the metrics applied here. Overall, the LAI exerts more influence on the EF than does the SM due to its overwhelming impacts on the latent heat flux. This study complements previous studies based on measurements only from the CF and has important implications for modeling LA coupling in weather and climate models. The multiple linear regression provides a more comprehensive measure of the integrated impacts on LA coupling from several different factors.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN60272 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 123; 15; 7867-7882
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-11-06
    Description: This study evaluates the impact of assimilating soil moisture data from NASA's Soil Moisture Active Passive (SMAP) on short-term regional weather and air quality modeling in East Asia during the Korea-US Air Quality Study (KORUS-AQ) airborne campaign. SMAP data are assimilated into the Noah land surface model using an ensemble Kalman filter approach in the Land Information System framework, which is semi-coupled with the NASA-Unified Weather Research and Forecasting model with online chemistry (NUWRF-Chem). With SMAP assimilation included, water vapor and carbon monoxide (CO) transport from northern-central China transitional climate zones to South Korea is better represented in NUWRF-Chem during two studied pollution events. Influenced by different synoptic conditions and emission patterns, impact of SMAP assimilation on modeled CO in South Korea is intense (〉30 ppbv) during one event and less significant (〈8 ppbv) during the other. SMAP assimilation impact on air quality modeling skill is complicated by other error sources such as the chemical initial and boundary conditions (IC/LBC) and emission inputs of NUWRF-Chem. Using a satellite-observation constrained chemical IC/LBC instead of a free-running, coarser-resolution chemical IC/LBC reduces modeled CO by up to 80 ppbv over South Korea. Consequently, CO performance is improved in the middle-upper troposphere whereas degraded in the lower troposphere. Remaining negative CO biases result largely from the emissions inputs. The advancements in land surface modeling and chemical IC/LBC presented here are expected to benefit future investigations on constraining emissions using observations, which can in turn enable more accurate assessments of SMAP assimilation and chemical IC/LBC impacts.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN60274 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 123; 18; 10,732-10,756
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...