ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-20
    Description: Seasonal forecasts made by coupled atmosphere-ocean general circulation models (GCMs) are increasingly able to provide skillful forecasts of climate anomalies. At some centers, the capabilities of these models are being expanded to represent carbon-climate feedbacks including ocean biogeochemistry (OB), terrestrial biosphere (TB) interactions, and fires. These advances raise the question of whether such models can support skillful forecasts of carbon fluxes.Here, we examine whether land and ocean carbon flux anomalies associated with the 2015-16 El Nino could have been predicted months in advance. This El Nino was noteworthy for the magnitude of the ocean temperature perturbation, the skill with which this perturbation was predicted, and the extensive satellite observations that can be used to track its impact. We explore this topic using NASA's Goddard Earth Observing System (GEOS) model, which routinely produces an ensemble of seasonal climate forecasts, and a suite of offline dynamical and statistical models that estimate carbon flux processes. Using GEOS forecast fields from 2015-16 to force flux model hindcasts shows that these models are able to reproduce significant features observed by satellites. Specifically, OB hindcasts are able to predict anomalies in chlorophyll distributions with lead times of 3-4 months. The ability of TB hindcasts to reproduce NDVI anomalies is driven by the skill of the climate forecast, which is greatest at short lead times over tropical landmasses. Statistical fire forecasts driven by ocean climate indices are able to predict burned area in the tropics with lead times of 3-12 months. We also integrate the ocean and land hindcast fluxes into the GEOS GCM to examine the magnitude of the atmospheric carbon dioxide anomaly and compare with satellite and ground-based observations.While seasonal forecasting remains an active area of research, these results demonstrate that forecasts of carbon flux processes can support a variety of applications, potentially allowing scientists to understand carbon-climate feedbacks as they happen and to capitalize on more flexible satellite technologies that allow areas of interest to be targeted with lead times of weeks to months. We also provide a first glimpse at the spring 2019 carbon forecast using the GEOS-based forecasting system.
    Keywords: Earth Resources and Remote Sensing
    Type: B51E-1990 , GSFC-E-DAA-TN64286 , American Geophysical Union (AGU) Fall Meeting; Dec 10, 2018 - Dec 14, 2018; Washington, D.C.; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: We perform a number of idealized assimilation experiments with the GEOS constituent data assimilation system to test the ability of GeoCarb retrievals of CO, CO2, and CH4 to constrain the interannual variability of these gases over the Amazon. Retrievals for instruments on other satellites which observe in similar channels (e.g. MOPITT, GOSAT, and OCO-2) are limited due to persistent cloud coverage. Given its ability to sample the same location multiple times in one day, the expectation is that GeoCarb retrievals will return more soundings than those from previous missions. The goal of the assimilation experiments is to understand which scanning strategies lead to the best sounding densities and thus have the best chance of constraining interannual variability in the carbon species. The experiments each begin by picking a given year at random from a nature run (i.e., a model simulation meant to represent the truth). The model fields are sampled according to a given strategy and then screened to account for cloud coverage. Next, we pick another year at random and assimilate the synthetic GeoCarb samples into the GEOS model for that year. The output of the assimilation, 6-hourly, 3D fields of each constituent, is then directly comparable to the nature run. This comparison allows us to evaluate the ability of GeoCarb measurements to constrain the interannual variability of each gas.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN70197 , International Workshop on Greenhouse Gas Measurements from Space (IWGGMS-15); Jun 03, 2019 - Jun 05, 2019; Sapporo; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The El Nino Southern Oscillation (ENSO) is the most important mode of tropical climate variability on interannual to decadal time scales. Correlations between atmospheric CO2 growth rate and ENSO activity are relatively well known but the magnitude of this correlation, the contribution from tropical marine vs. terrestrial flux components, and the causal mechanisms, are poorly constrained in space and time. The launch of NASA's Orbiting Carbon Observatory-2 (OCO-2) mission in July 2014 was rather timely given the development of strong ENSO conditions over the tropical Pacific Ocean in 2015-2016. In this presentation, we will discuss how the high-density observations from OCO-2 provided us with a novel dataset to resolve the linkages between El Nino and atmospheric CO2. Along with information from in situ observations of pCO2 from NOAA's Tropical Atmosphere Ocean (TAO) project and atmospheric CO2 from the Scripps CO2 Program, and other remote-sensing missions, we are able to piece together the time dependent response of atmospheric CO2 concentrations over the Tropics. Our findings confirm the hypothesis from studies following the 1997-1998 El Nino event that an early reduction in CO2 outgassing from the tropical Pacific Ocean is later reversed by enhanced net CO2 emissions from the terrestrial biosphere. This implies that a component of the interannual variability (IAV) in the growth rate of atmospheric CO2, which has typically been used to constrain the climate sensitivity of tropical land carbon fluxes, is strongly influenced and modified by ocean fluxes during the early phase of the ENSO event. Our analyses shed further light on the understanding of the marine vs. terrestrial partitioning of tropical carbon fluxes during El Nino events, their relative contributions to the global atmospheric CO2 growth rate, and provide clues about the sensitivity of the carbon cycle to climate forcing on interannual time scales.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN50624 , American Geophysical Union(AGU) 2017 Fall Meeting; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The powerful El Nio event of 2015-2016 - the third most intense since the 1950s - has exerted a large impact on the Earth's natural climate system. The column-averaged CO2 dry-air mole fraction (XCO2) observations from satellites and ground based networks are analyzed together with in situ observations for the period of September 2014 to October 2016. From the differences between satellite (OCO-2) observations and simulations using an atmospheric chemistry-transport model, we estimate that, relative to the mean annual fluxes for 2014, the most recent El Nio has contributed to an excess CO2 emission from the Earth's surface (land+ocean) to the atmosphere in the range of 2.4+/-0.2 PgC (1 Pg = 10(exp 15) g) over the period of July 2015 to June 2016. The excess CO2 flux is resulted primarily from reduction in vegetation uptake due to drought, and to a lesser degree from increased biomass burning. It is about the half of the CO2 flux anomaly (range: 4.4-6.7 PgC) estimated for the 1997/1998 El Nio. The annual total sink is estimated to be 3.9+/-0.2 PgC for the assumed fossil fuel emission of 10.1 PgC. The major uncertainty in attribution arise from error in anthropogenic emission trends, satellite data and atmospheric transport.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN47575 , Scientific Reports (e-ISSN 2045-2322); 7; 13567
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The Goddard Earth Observing System (GEOS) model has been developed in the Global Modeling and Assimilation Office (GMAO) at NASA's Goddard Space Flight Center. From its roots in chemical transport and as a General Circulation Model, the GEOS model has been extended to an Earth System Model based on a modular construction using the Earth System Modeling Framework (ESMF), combining elements developed in house in the GMAO with others that are imported through collaborative research. It is used extensively for research and for product generation, both as a free-running model and as the core of the GMAO's data assimilation system. In recent years, the GMAO's modeling and assimilation efforts have been strongly supported by Piers Sellers, building on both his earlier legacy as an observationally oriented model developer and his post-astronaut career as a dynamic leader into new territory. Piers' long-standing interest in the carbon cycle and the combination of models with observations motivates this presentation, which will focus on the representation of the carbon cycle in the GEOS Earth System Model. Examples will include: (i) the progression from specified land-atmosphere surface fluxes to computations with an interactive model component (Catchment-CN), along with constraints on vegetation distributions using satellite observations; (ii) the use of high-resolution satellite observations to constrain human-generated inputs to the atmosphere; (iii) studies of the consistency of the observed atmospheric carbon dioxide concentrations with those in the model simulations. The presentation will focus on year-to-year variations in elements of the carbon cycle, specifically on how the observations can inform the representation of mechanisms in the model and lead to integrity in global carbon dioxide simulations. Further, applications of the GEOS model to the planning of new carbon-climate observations will be addressed, as an example of the work that was strongly supported by Piers in the last months of his leadership of Earth Science at NASA Goddard.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN51736 , American Meteorological Society (AMS) Annual Meeting; Jan 07, 2018 - Jan 11, 2018; Austin, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: Wetlands are thought to be the major contributor to interannual variability in the growth rate of atmospheric methane (CH4) with anomalies driven by the influence of the El Nio-Southern Oscillation (ENSO). Yet it remains unclear whether (i) the increase in total global CH4 emissions during El Nino versus La Nina events is from wetlands and (ii) how large the contribution of wetland CH4 emissions is to the interannual variability of atmospheric CH4. We used a terrestrial ecosystem model that includes permafrost and wetland dynamics to estimate CH4 emissions, forced by three separate meteorological reanalyses and one gridded observational climate dataset, to simulate the spatio-temporal dynamics of wetland CH4 emissions from 1980-2016. The simulations show that while wetland CH4 responds with negative annual anomalies during the El Nino events, the instantaneous growth rate of wetland CH4 emissions exhibits complex phase dynamics. We find that wetland CH4 instantaneous growth rates were declined at the onset of the 2015-2016 El Nino event but then increased to a record-high at later stages of the El Nino event (January through May 2016). We also find evidence for a step increase of CH4 emissions by 7.8+/-1.6 Tg CH4 per yr during 2007-2014 compared to the average of 2000-2006 from simulations using meteorological reanalyses, which is equivalent to a approx.3.5 ppb per yr rise in CH4 concentrations. The step increase is mainly caused by the expansion of wetland area in the tropics (30 deg S-30 deg N) due to an enhancement of tropical precipitation as indicated by the suite of the meteorological reanalyses. Our study highlights the role of wetlands, and the complex temporal phasing with ENSO, in driving the variability and trends of atmospheric CH4 concentrations. In addition, the need to account for uncertainty in meteorological forcings is highlighted in addressing the interannual variability and decadal-scale trends of wetland CH4 fluxes.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN57428 , Environmental Research Letters (e-ISSN 1748-9326); 13; 7; 074009
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-01-03
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN76602 , AGU 2019 Fall Meeting; Dec 09, 2019 - Dec 13, 2019; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-01-03
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN76521
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-01-03
    Description: The Orbiting Carbon Observatory-2 and Orbiting Carbon Observatory-3, launched in 2015 and 2019, respectively, are intended to collect and deliver high-resolution observations of CO2 with unprecedented space and time coverage. Observations of CO2 from these remote-sensing missions (also known as XCO2, or column-based average, dry air mole fraction of CO2) are then used by the global carbon cycle community to answer a wide range of science questions, from the distribution and quantification of global and regional CO2 source-sink patterns to quantification of anthropogenic sources at urban scales. Even though we have had the OCO-2 mission flying for a few years now, the retrieval algorithms are continuously evolving and improving to deliver XCO2 retrievals with very high precision and high accuracy (or low biases). In this presentation, we will discuss a simple yet effective quantitative framework that has been developed by the OCO-2 flux team to evaluate the information content of these XCO2 retrievals as soon as they are released, i.e., with lower latency than full-scale flux inversions. This framework serves as a precursor to advanced inverse modeling frameworks and is intended to provide an early but accurate assessment of the signal present in the satellite retrievals, the robustness of that signal, and the ability of these retrievals to resolve patterns in CO2 surface fluxes that cannot be resolved by our current network of surface sites. Specific results will tackle a tiered set of questions that are being addressed using this framework: (a) what are the distribution of retrievals in the different modes of operation and how do they vary in space and time? (b) what is the information that is being given to the inverse modeling frameworks from the space-based data, information above and beyond what is provided by the in-situ data? and (c) how do these factors influence our choices for doing flux inversions with the satellite retrievals? While the primary focus of the results will be on application of this technique to mature OCO-2 retrievals, we will show early results for a couple of months of OCO-3 retrievals. For the time-period that the retrievals from the two missions overlap, we will highlight how this framework allows us to effortlessly put the information from OCO-3 and OCO-2 on an equal footing, thus enabling easy comparison between the two pioneering missions.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN76547 , AGU Fall Meeting; Dec 09, 2019 - Dec 13, 2019; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: NASA's Global Modeling and Assimilation Office (GMAO) produces a variety of carbon products based the synthesis of satellite remote sensing data and outputs of the Goddard Earth Observing System (GEOS). This includes bottom-up surface fluxes due to fossil fuel emissions, biomass burning, terrestrial biospheric exchange, and ocean exchangeconstrained by measurements of nighttime lights, fire radiative power, normalized difference vegetation index, and ocean color. These fluxes are the basis of top-down estimates of carbon concentrations and fluxes. In particular, the GMAO system processes retrievals of column carbon dioxide (XCO2) from GOSAT and OCO-2 to produce a high-resolution, long-term global analysis of CO2 in three dimensions every 6 hours. Here, we discuss the potential applications of such products for satellite intercomparison and evaluation against independent, non-coincident data. We also highlight the ability to provide monthly global atmospheric growth rates inferred from the assimilated CO2 concentration product. Finally, we discuss the challenges facing such products including bias correction and the estimation and analysis of model transport errors.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN70198 , International Workshop on Greenhouse Gas Measurements from Space (IWGGMS-15); Jun 03, 2019 - Jun 05, 2019; Sapporo; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...