ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-02-13
    Description: Circadian rhythms of behavior are driven by oscillators in the brain that are coupled to the environmental light cycle. Circadian rhythms of gene expression occur widely in peripheral organs. It is unclear how these multiple rhythms are coupled together to form a coherent system. To study such coupling, we investigated the effects of cycles of food availability (which exert powerful entraining effects on behavior) on the rhythms of gene expression in the liver, lung, and suprachiasmatic nucleus (SCN). We used a transgenic rat model whose tissues express luciferase in vitro. Although rhythmicity in the SCN remained phase-locked to the light-dark cycle, restricted feeding rapidly entrained the liver, shifting its rhythm by 10 hours within 2 days. Our results demonstrate that feeding cycles can entrain the liver independently of the SCN and the light cycle, and they suggest the need to reexamine the mammalian circadian hierarchy. They also raise the possibility that peripheral circadian oscillators like those in the liver may be coupled to the SCN primarily through rhythmic behavior, such as feeding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stokkan, K A -- Yamazaki, S -- Tei, H -- Sakaki, Y -- Menaker, M -- MH 56647/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2001 Jan 19;291(5503):490-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Science Foundation Center for Biological Timing and Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, VA 22904-4328, USA. mm7e@virginia.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11161204" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; *Circadian Rhythm ; Corticosterone/blood/pharmacology ; Culture Techniques ; Eating ; Female ; *Food ; *Gene Expression Regulation ; Genes, Reporter ; Liver/*physiology ; Luciferases/genetics ; Lung/physiology ; Male ; Motor Activity ; Organ Specificity ; Rats ; Suprachiasmatic Nucleus/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-04-28
    Description: In multicellular organisms, circadian oscillators are organized into multitissue systems which function as biological clocks that regulate the activities of the organism in relation to environmental cycles and provide an internal temporal framework. To investigate the organization of a mammalian circadian system, we constructed a transgenic rat line in which luciferase is rhythmically expressed under the control of the mouse Per1 promoter. Light emission from cultured suprachiasmatic nuclei (SCN) of these rats was invariably and robustly rhythmic and persisted for up to 32 days in vitro. Liver, lung, and skeletal muscle also expressed circadian rhythms, which damped after two to seven cycles in vitro. In response to advances and delays of the environmental light cycle, the circadian rhythm of light emission from the SCN shifted more rapidly than did the rhythm of locomotor behavior or the rhythms in peripheral tissues. We hypothesize that a self-sustained circadian pacemaker in the SCN entrains circadian oscillators in the periphery to maintain adaptive phase control, which is temporarily lost following large, abrupt shifts in the environmental light cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamazaki, S -- Numano, R -- Abe, M -- Hida, A -- Takahashi, R -- Ueda, M -- Block, G D -- Sakaki, Y -- Menaker, M -- Tei, H -- MH56647/MH/NIMH NIH HHS/ -- R01 MH056647/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2000 Apr 28;288(5466):682-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉NSF Center for Biological Timing and Department of Biology, University of Virginia, Charlottesville, VA 22903-2477, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10784453" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Biological Clocks/*physiology ; Cell Cycle Proteins ; Circadian Rhythm/*physiology ; Culture Techniques ; Darkness ; Genes, Reporter ; Light ; Liver/physiology ; Luciferases/genetics/metabolism ; Lung/physiology ; Male ; Mice ; Motor Activity ; Muscle, Skeletal/physiology ; Nuclear Proteins/genetics/physiology ; Period Circadian Proteins ; Promoter Regions, Genetic ; Rats ; Suprachiasmatic Nucleus/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...