ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Experimental investigations of specific flow phenomena, e.g., Shock Wave Boundary-Layer Interactions (SWBLI), provide great insight to the flow behavior but often lack the necessary details to be useful as CFD validation experiments. Reasons include: 1.Undefined boundary conditions Inconsistent results 2.Undocumented 3D effects (CL only measurements) 3.Lack of uncertainty analysis While there are a number of good subsonic experimental investigations that are sufficiently documented to be considered test cases for CFD and turbulence model validation, the number of supersonic and hypersonic cases is much less. This was highlighted by Settles and Dodsons [1] comprehensive review of available supersonic and hypersonic experimental studies. In all, several hundred studies were considered for their database.Of these, over a hundred were subjected to rigorous acceptance criteria. Based on their criteria, only 19 (12 supersonic, 7 hypersonic) were considered of sufficient quality to be used for validation purposes. Aeschliman and Oberkampf [2] recognized the need to develop a specific methodology for experimental studies intended specifically for validation purposes.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN25302 , 2015 AJK Fluids Engineering Division Summer Meeting; Jul 26, 2015 - Jul 31, 2015; Seoul; Korea, Democratic People''s Republic of
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Preliminary results of an experimental investigation of a Mach 2.5 two-dimensional axisymmetric shock-wave/boundary-layer interaction (SWBLI) are presented. The purpose of the investigation is to create a SWBLI dataset specifically for CFD validation purposes. Presented herein are the details of the facility and preliminary measurements characterizing the facility and interaction region. The results will serve to define the region of interest where more detailed mean and turbulence measurements will be made.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AJK2015-06342 , GRC-E-DAA-TN23733 , 2015 AJK Fluids Engineering Division Summer Meeting; Jul 26, 2015 - Jul 31, 2015; Seoul; Korea, Republic of
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a SNAP derivative reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Space Technology and Applications International Forum, STAIF-2008; Feb 10, 2008 - Feb 14, 2008; , Albuquerque, NM
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: A low-speed wind-tunnel test was performed with a 3%-scale model of a booster rocket mated to an X-43A research vehicle, a combination referred to as the Hyper-X launch vehicle. The test was conducted both in freestream air and in the presence of a partial model of the B-52B airplane. The objectives of the test were to obtain force and moment data to generate structural loads affecting the pylon of the B-52B airplane and to determine the aerodynamic influence of the B-52B on the Hyper-X launch vehicle for evaluating launch separation characteristics. The windtunnel test was conducted at a low-speed wind tunnel in Hampton, Virginia. All moments and forces reported are based either on the aerodynamic influence of the B-52B airplane or are for the Hyper-X launch vehicle in freestream air. Overall, the test showed that the B-52B airplane imparts a strong downwash onto the Hyper-X launch vehicle, reducing the net lift of the Hyper-X launch vehicle. Pitching and rolling moments are also imparted onto the booster and are a strong function of the launch-drop angle of attack.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 24th AIAA Applied Aerodynamics Conference (Paper 3850); Jun 05, 2006 - Jun 08, 2006; San Francisco, CA; United States|Journal of Spacecraft and Rockets 2007 (ISSN 0022-4650); 44; 4; 871-877
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-11
    Description: Experiments were performed on the collision of a solid sphere with a nearly horizontal flat surface covered with a thin layer of viscous liquid. High-speed collisions were obtained by dropping the ball onto the surface from various heights, using gravitational acceleration. Low-speed collisions were obtained using pendulums with long strings or by launching the balls at low velocities in the reduced-gravity environment of parabolic flight. The sphere bounces only when the impact velocity exceeds a critical value. The coefficient of restitution (ratio of rebound velocity to impact velocity) increases with increasing impact velocity above the critical value, indicating the increasing relative importance of elastic deformation to viscous dissipation. The critical impact velocity increases, and the coefficient of restitution decreases, with increasing viscosity or thickness of the liquid layer and with decreasing density or size of the sphere. The ratio of the wet and dry coefficients is expressed as a function of the Stokes number (ratio of particle inertia and viscous forces), showing good agreement between theory and experiment. Similar experiments were performed with the flat surface inclined at various angles to the approaching sphere. A modified Stokes number, which is a measure of the ratio of inertia of the sphere in the normal direction to the viscous forces exerted by the fluid layer, was used for the analysis of oblique collisions. Even for these oblique collisions, it was found that no rebound of the ball was observed below a certain critical Stokes number. The coefficient of normal restitution, defined as a ratio of normal rebound velocity to normal approach velocity, was found to increase beyond the critical Stokes number and even out as it approaches the value for dry restitution at high Stokes numbers. It was also found that, for smooth spheres like steel, the normal restitution at the same modified Stokes number is independent of the angle of impact. The tangential coefficient of restitution, defined as the ratio of tangential rebound velocity to tangential approach velocity, is found to be nearly unity, except for very low approach velocities. Thus, as a first approximation, the theories that predict the coefficient of restitution for head-on wet collisions can be extended to predict the coefficient of normal restitution for oblique wet collisions. Additional experiments were performed with soft surfaces in which a porous cloth or sponge layer was placed over the hard, flat surface. In these experiments, the coefficient of restitution was found to decrease with increasing impact velocity, due to inelastic losses in the soft material. A model combining inelastic deformation and flow through porous media was developed to describe these findings.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Preliminary results of an experimental investigation of a Mach 2.5 two-dimensional axisymmetric shock-wave/ boundary-layer interaction (SWBLI) are presented. The purpose of the investigation is to create a SWBLI dataset specifically for CFD validation purposes. Presented herein are the details of the facility and preliminary measurements characterizing the facility and interaction region. These results will serve to define the region of interest where more detailed mean and turbulence measurements will be made.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2015-218841 , AJK2015-06342 , GRC-E-DAA-TN23467 , Joint Fluids Engineering Conference 2015; Jul 26, 2015 - Jul 31, 2015; Seoul; Korea, Republic of
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...