ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Fluid Mechanics and Heat Transfer  (15)
  • 1955-1959  (15)
  • 1
    Publication Date: 2019-08-16
    Description: Superposition techniques are used to calculate the rate of heat transfer from a flat plate to a turbulent incompressible boundary layer for several cases of variable surface temperature. The predictions of a number of these calculations are compared with experimental heat- transfer rates, and good agreement is obtained. A simple computing procedure for determining the heat-transfer rates from surfaces with arbitrary wall-temperature distributions is presented and illustrated by two examples. The inverse problem of determining the temperature distribution from an arbitrarily prescribed heat flux is also treated, both experimentally and analytically.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: MEMO-12-3-58W , CF-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-16
    Description: The fluid-dynamic characteristics of flat plates, 5 deg and 10 deg wedges, and 5 deg and 10 deg cones have been investigated at Mach numbers from 16.3 to 23.9 in helium flow. The flat-plate results are for a leading-edge Reynolds number range of 584 to 19,500 and show that the induced pressure distribution is essentially linear with the hypersonic viscous interaction parameter bar X within the scope of this investigation. It is also shown that the rate at which the induced pressure varies with bar X is a linear function of the leading-edge Reynolds number. The wedge and cone results show that as the flow-deflection angle increases, the induced-pressure effects decrease and the measured pressures approach those predicted by inviscid shock theory.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-MEMO-5-8-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-15
    Description: The results of some experimental and theoretical studies of the interaction of oblique shock waves with laminar boundary layers are presented. Detailed measurements of pressure distribution, shear distribution, and velocity profiles were made during the interaction of oblique shock waves with laminar boundary layers on a flat plate. From these measurements a model was derived to predict the pressure levels characteristic of separation and the length of the separated region.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-MEMO-2-18-59W
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-15
    Description: The effect of an external boundary layer on the performance of an axisymmetric external-internal-compression inlet was evaluated at Mach numbers of 3.0 and 2.5 and Reynolds numbers from 2.2 to 0.5 x 10(exp 6) per foot. The inlet was tested at locations up to two-thirds of the way into the 1.7- and 9.0-inch boundary layers generated by a flat plate and the tunnel floor, respectively. The inlet could be readily started at all conditions tested, including those where the boundary layer was separated upstream of the inlet by the various shock systems during the restart cycle. Although the inlet performance decreased with increasing immersion into the boundary layer at both Mach numbers, the inlet was more sensitive to boundary-layer ingestion at the design Mach number of 3.0.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-TM-X-49
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-15
    Description: Exploratory tests of a circular internal-contraction inlet were made at Mach numbers of 2.00 and 2.35 to determine the effect of a cowl-type boundary-layer control located downstream of the inlet throat. The inlet was designed for a Mach number of 2.5. Tests were also made of the inlet modified to correspond to design Mach numbers of 2.35 and 2.25. Surveys near the minimum area section of the inlet without boundary-layer control indicated maximum averaged pressure recoveries between 0.90 and 0.92 at a free-stream Mach number, M(sub infinity), of 2.35 for the inlets. Farther downstream, after partial subsonic diffusion, a maximum pressure recovery of 0.842 was obtained with the inlet at M(sub infinity) = 2.35. The pressure recovery of the inlet was increased by 0.03 at a Mach number of 2.35 and decreased by 0.02 at a Mach number of 2.00 by the application of cowl-type boundary-layer control. Further investigation with the inlet without bleed demonstrated that an increase of angle of attack from 0 deg to 3 deg reduced the pressure recovery 0.04. The effect of Reynolds number was to increase pressure recovery 0.07 (from 0.785 to 0.855) with an increase in Reynolds number (based on inlet diameter) from 0.79 x 10(exp 6) to 3.19 x 10(exp 6).
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-MEMO-12-31-58A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-15
    Description: A detailed report is given of exact (numerical) solutions of the laminar-boundary-layer equations for the Prandtl number range appropriate to liquid metals (0.003 to 0.03). Consideration is given to the following situations: (1) forced convection over a flat plate for the conditions of uniform wall temperature and uniform wall heat flux, and (2) free convection over an isothermal vertical plate. Tabulations of the new solutions are given in detail. Results are presented for the heat-transfer and shear-stress characteristics; temperature and velocity distributions are also shown. The heat-transfer results are correlated in terms of dimensionless parameters that vary only slightly over the entire liquid-metal range. Previous analytical and experimental work on low Prandtl number boundary layers is surveyed and compared with the new exact solutions.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-MEMO-2-27-59E
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-15
    Description: A hydrodynamic investigation was made in Langley tank no. 1 of a planing surface which was curved longitudinally in the shape of a circular arc with the center of curvature above the model and had a beam of inches and a radius of curvature of 20 beams. The planing surface had length-beam ratio of 9 and an angle of dead rise of 0 deg. Wetted length, resistance, and trimming moment were determined for values of load coefficient C(sub Delta) from -4.2 to 63.9 and values of speed coefficient C(sub V) from 6 to 25. The effects of convexity were to increase the wetted length-beam ratio (for a given lift), to decrease the lift-drag ratio, to move the center of pressure forward, and ta increase the trim for maximum lift-drag ratio as compared with values for a flat surface. The effects were greatest at low trims and large drafts. The maximum negative lift coefficient C(sub L,b) obtainable with a ratio of the radius of curvature to the beam of 20 was -0.02. The effects of camber were greater in magnitude for convexity than for the same amount of concavity.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-MEMO-1-25-59L , L-159
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-10
    Description: Some experimental and theoretical studies have been made of axisymmetric free jets exhausting from sonic and supersonic nozzles into still air and into supersonic streams with a view toward problems associated with propulsive jets and the investigation of these problems. For jets exhausting into still air, consideration is given to the effects of jet Mach number, nozzle divergence angle, and jet static pressure ratio upon jet structure, jet wavelength, and the shape and curvature of the jet boundary. Studies of the effects of the ratio of specific heats of the jets are included are observations pertaining to jet noise and jet simulation. For jets exhausting into supersonic streams, an attempt has been made to present primarily theoretical certain jet interference effects and in formulating experimental studies. The primary variables considered are jet Mach number, free stream Mach number, jet static pressure ratio, ratio of specific heats of the jet, nozzle exit angle, and boattail angle. The simulation problem and the case of a hypothetical hypersonic vehicle are examined, A few experimental observations are included.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-TR-R-6
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-15
    Description: The heat-transfer rates were measured on a series of cones of various surface finishes at a Mach number of 4.95 and Reynolds numbers per foot varying from 20 x 10(exp 6) to 100 x 10(exp 6). The range of surface finish was from a very smooth polish to smooth machining with no polish (65 micro inches rms). Some laminar boundary-layer data were obtained, since transition was not artificially tripped. Emphasis, however, is centered on the turbulent boundary layer. The results indicated that the turbulent heat-transfer rate for the highest roughness tested was only slightly greater than that for the smoothest surface. The laminar-sublayer thickness was calculated to be about half the roughness height for the roughest model at the highest value of unit Reynolds number tested.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-MEMO-6-10-59L , L-195
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-15
    Description: Superposition techniques are used to calculate the rate of heat transfer from a flat plate to a turbulent incompressible boundary layer for several cases of variable surface temperature. The predictions of a number of these calculations are compared with experimental heat-transfer rates, and good agreement is obtained. A simple computing procedure for determining the heat-transfer rates from surfaces with arbitrary wall-temperature distributions is presented and illustrated by two examples. The inverse problem of determining the temperature distribution from an arbitrarily prescribed heat flux is also treated, both experimentally and analytically.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-MEMO-12-3-58W
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...