ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • FLUID MECHANICS AND HEAT TRANSFER  (2)
  • 1
    Publication Date: 2019-06-28
    Description: The effects of rotation on impingement cooling of turbine blades were studied experimentally as a specialized facility at M.I.T. A foil heated resistively was cooled by a jet flow on one side and temperature monitored on the other. Rotating the blade limits the heat transfer path to conduction through the support structure and radiation. IR radiometry furnishes the temperature distributions on the chamber wall, permitting the internal heat transfer coefficient to be measured. The heat transfer efficiency has been found to fall as much as 30 percent as rotational speed increases. The conditions observed confirm the significance of rotational effects, particularly with regard to potential early blade failure.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA PAPER 85-1217
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: The present consideration of rotation effects on heat transfer in a radially exhausted, impingement-cooled turbine blade model gives attention to experimental results for Reynolds and Rossby numbers and blade/coolant temperature ratio values that are representative of small gas turbine engines. On the basis of a model that encompasses the effects of Coriolis force and buoyancy on heat transfer, bouyancy is identified as the cause of an average Nusselt number that is 20-30 percent lower than expected from previous nonrotating data. A heuristic model is proposed which predicts that the impingement jets nearest the blade roots should deflect inward, due to a centripetal force generated by their tangential velocity counter to the blade motion. Potentially serious thermal stresses must be anticipated from rotation effects in the course of blade design.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...