ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • FLUID MECHANICS AND HEAT TRANSFER  (644)
  • 1985-1989  (364)
  • 1980-1984  (259)
  • 1970-1974  (21)
Collection
Years
Year
  • 1
    Publication Date: 2011-08-19
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Propulsion and Power (ISSN 0748-4658); 3; 219-226
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: Under the Aircraft Energy Efficiency - Laminar Flow Control Program, there are currently three flight test programs under way to address critical issues concerning laminar flow technology application to commercial transports. The Leading-Edge Flight Test (LEFT) with a JetStar aircraft is a cooperative effort with the Ames/Dryden Flight Research Facility to provide operational experience with candidate leading-edge systems representative of those that might be used on a future transport. In the Variable Sweep Transition Flight Experiment (VSTFE), also a cooperative effort between Langley and Ames/Dryden, basic transition data on an F-14 wing with variable sweep will be obtained to provide a data base for laminar flow wing design. Finally, under contract to the Boeing Company, the acoustic environment on the wing of a 757 aircraft will be measured and the influence of engine noise on laminar flow determined with a natural laminar flow glove on the wing. The status and plans for these programs are reported.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Langley Symposium on Aerodynamics, Volume 1; p 485-518
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-10-02
    Description: Unsteady two- and three-dimensional flow structure at leading and trailing edges of bodies can be characterized effectively using recently developed techniques for acquisition and interpretation of flow visualization. The techniques addressed here include: flow image/surface pressure correlations; 3-D reconstruction of flow structure from flow images; and interactive interpretation of flow images with theoretical simulations. These techniques can be employed in conjunction with: visual correlation and ensemble-averaging, both within a given image and between images; recognition of patterns from images; and estimates of velocity eigenfunctions from images.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AGARD, Aerodynamic and Related Hydrodynamic Studies Using Water Facilities; 13 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: (Previously cited in issue 06, p. 860, Accession no. A82-17824)
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Six flowfield configurations are investigated with sidewall angles of 90 and 45 deg, and swirl vane angles of 0, 45, and 70 deg. It is found that central recirculation zones occur for the swirling flow cases investigated, which extend from the inlet to x/D = 1.7, where x is the axial polar coordinate, and D is the test section diameter. Five-hole pitot probe pressure measurements are used to determine time-mean velocities, and corresponding flow situations are predicted and compared to results of experimental data. Excellent agreement is found for the nonswirling flow, although poor agreement is found for swirling flow cases, especially near the inlet. The discrepancy is attributed to the lack of realism in the turbulence model, and/or to inaccurate specification of time-mean velocity and turbulence energy distributions at the inlet.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA PAPER 82-0177 , Aerospace Sciences Meeting; Jan 11, 1982 - Jan 14, 1982; Orlando, FL
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-19
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Spacecraft and Rockets (ISSN 0022-4650); 23; 420-427
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-19
    Description: The properties of the Karhunen-Loeve expansion of a strongly inhomogeneous random process are examined with emphasis on applications to turbulent flow fields. The ability of the KL expansion to represent functions that have both slow and rapid variations in a relatively small number of expansion terms is tested on a one-dimensional model based on the forced Burgers' equation. The rate of the convergence of the expansion is evaluated, and its dependence on the Reynolds number is determined. It is shown that the KL eigenfunctions possess wall boundary layers attached to outer structures that are independent of the Reynolds number (at high Reynolds numbers). It is also shown that the spectrum of eigenvalues is broad at large Reynolds numbers, requiring many terms to represent higher-order derivatives of the function.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Physics of Fluids (ISSN 0031-9171); 31; 2573-258
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-31
    Description: It is well known that turbulent mixing layers are dominated by large scale, fairly coherent structures, and that these structures are related to the stability characteristics of the flow. These facts have led researchers to attempt controlling such flows by selectively forcing certain unstable modes, which can in addition have the effect of suppressing other modes. Much of the work on controlling the mixing layer has relied on forcing 2-D instabilities. The results of forcing 3-D instabilities are addressed. The objectives of the work are twofold: to understand how a mixing layer responds to 3-D perturbations, and to test the validity of an amplitude expansion in predicting the mixing layer development. The amplitude expansion could be very useful in understanding and predicting the 3-D response of the flow to a variety of initial conditions.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Stanford Univ., Studying Turbulence Using Numerical Simulation Databases, 2. Proceedings of the 1988 Summer Program; p 91-116
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-08-31
    Description: The dynamics of rotation and oscillation is investigated of a freely suspended liquid drop under the influence of surface tension and positioned inside an experimental apparatus by acoustic forces in the low acceleration environment of Spacelab 3. After a drop was observed to be spherical and stably located at the center of the chamber, it was set into rotation or oscillation by acoustic torque or modulated radiation pressure force.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Marshall Space Flight Center Spacelab 3 Mission Science Review; p 27-30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: Progress was made on further flow visualization of vortex-leading edge interaction, in conjunction with characterization of the unsteady pressure field. The range of scale of an elliptical leading edge, relative to the incident primary vortex, was determined. The scale of the incident vortex was characterized in terms of mean shear layer parameters. An overview of the interaction mechanism for the range of thin to thick leading-edges is given. The interaction mechanism corresponding to the case where the incident vortex is above the leading-edge is given for hydrogen bubble wires well upstream of and at the tip of the leading edge. A sample of the instantaneous pressure distribution for the case where the incident vortex dives beneath the edge is presented. The effect of scale of the incident vortex relative to that of the leading-edge was examined. The circulation and length scale of the incident vortices in the street are being characterized.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-CR-181265 , NAS 1.26:181265
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...