ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-10-29
    Description: Phosphorus is a biolimiting nutrient that has an important role in regulating the burial of organic matter and the redox state of the ocean-atmosphere system. The ratio of phosphorus to iron in iron-oxide-rich sedimentary rocks can be used to track dissolved phosphate concentrations if the dissolved silica concentration of sea water is estimated. Here we present iron and phosphorus concentration ratios from distal hydrothermal sediments and iron formations through time to study the evolution of the marine phosphate reservoir. The data suggest that phosphate concentrations have been relatively constant over the Phanerozoic eon, the past 542 million years (Myr) of Earth's history. In contrast, phosphate concentrations seem to have been elevated in Precambrian oceans. Specifically, there is a peak in phosphorus-to-iron ratios in Neoproterozoic iron formations dating from approximately 750 to approximately 635 Myr ago, indicating unusually high dissolved phosphate concentrations in the aftermath of widespread, low-latitude 'snowball Earth' glaciations. An enhanced postglacial phosphate flux would have caused high rates of primary productivity and organic carbon burial and a transition to more oxidizing conditions in the ocean and atmosphere. The snowball Earth glaciations and Neoproterozoic oxidation are both suggested as triggers for the evolution and radiation of metazoans. We propose that these two factors are intimately linked; a glacially induced nutrient surplus could have led to an increase in atmospheric oxygen, paving the way for the rise of metazoan life.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Planavsky, Noah J -- Rouxel, Olivier J -- Bekker, Andrey -- Lalonde, Stefan V -- Konhauser, Kurt O -- Reinhard, Christopher T -- Lyons, Timothy W -- England -- Nature. 2010 Oct 28;467(7319):1088-90. doi: 10.1038/nature09485.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth Sciences, University of California, Riverside, California 92521, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20981096" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquatic Organisms/*metabolism ; Atmosphere/chemistry ; *Biological Evolution ; Ferric Compounds/analysis/metabolism ; Geologic Sediments/chemistry ; History, Ancient ; Ice Cover ; Iron/analysis/metabolism ; Marine Biology ; Oceans and Seas ; Oxidation-Reduction ; Oxygen/analysis/metabolism ; Phosphates/analysis/*metabolism ; Phosphorus/analysis/metabolism ; Seawater/chemistry ; Silicon Dioxide/analysis/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-03-28
    Description: Biogeochemical signatures preserved in ancient sedimentary rocks provide clues to the nature and timing of the oxygenation of the Earth's atmosphere. Geochemical data suggest that oxygenation proceeded in two broad steps near the beginning and end of the Proterozoic eon (2,500 to 542 million years ago). The oxidation state of the Proterozoic ocean between these two steps and the timing of deep-ocean oxygenation have important implications for the evolutionary course of life on Earth but remain poorly known. Here we present a new perspective on ocean oxygenation based on the authigenic accumulation of the redox-sensitive transition element molybdenum in sulphidic black shales. Accumulation of authigenic molybdenum from sea water is already seen in shales by 2,650 Myr ago; however, the small magnitudes of these enrichments reflect weak or transient sources of dissolved molybdenum before about 2,200 Myr ago, consistent with minimal oxidative weathering of the continents. Enrichments indicative of persistent and vigorous oxidative weathering appear in shales deposited at roughly 2,150 Myr ago, more than 200 million years after the initial rise in atmospheric oxygen. Subsequent expansion of sulphidic conditions after about 1,800 Myr ago (refs 8, 9) maintained a mid-Proterozoic molybdenum reservoir below 20 per cent of the modern inventory, which in turn may have acted as a nutrient feedback limiting the spatiotemporal distribution of euxinic (sulphidic) bottom waters and perhaps the evolutionary and ecological expansion of eukaryotic organisms. By 551 Myr ago, molybdenum contents reflect a greatly expanded oceanic reservoir due to oxygenation of the deep ocean and corresponding decrease in sulphidic conditions in the sediments and water column.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scott, C -- Lyons, T W -- Bekker, A -- Shen, Y -- Poulton, S W -- Chu, X -- Anbar, A D -- England -- Nature. 2008 Mar 27;452(7186):456-9. doi: 10.1038/nature06811.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth Sciences, University of California, Riverside, California 92521, USA. cscot002@ucr.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18368114" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/chemistry ; Geologic Sediments/chemistry ; History, Ancient ; Molybdenum/analysis ; Oceans and Seas ; Oxygen/*analysis/chemistry ; Seawater/*chemistry ; Sulfides/chemistry ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-09-09
    Description: The chemical composition of the ocean changed markedly with the oxidation of the Earth's surface, and this process has profoundly influenced the evolutionary and ecological history of life. The early Earth was characterized by a reducing ocean-atmosphere system, whereas the Phanerozoic eon (less than 542 million years ago) is known for a stable and oxygenated biosphere conducive to the radiation of animals. The redox characteristics of surface environments during Earth's middle age (1.8-1 billion years ago) are less well known, but it is generally assumed that the mid-Proterozoic was home to a globally sulphidic (euxinic) deep ocean. Here we present iron data from a suite of mid-Proterozoic marine mudstones. Contrary to the popular model, our results indicate that ferruginous (anoxic and Fe(2+)-rich) conditions were both spatially and temporally extensive across diverse palaeogeographic settings in the mid-Proterozoic ocean, inviting new models for the temporal distribution of iron formations and the availability of bioessential trace elements during a critical window for eukaryotic evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Planavsky, Noah J -- McGoldrick, Peter -- Scott, Clinton T -- Li, Chao -- Reinhard, Christopher T -- Kelly, Amy E -- Chu, Xuelei -- Bekker, Andrey -- Love, Gordon D -- Lyons, Timothy W -- England -- Nature. 2011 Sep 7;477(7365):448-51. doi: 10.1038/nature10327.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth Sciences, University of California, Riverside, California 92521, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21900895" target="_blank"〉PubMed〈/a〉
    Keywords: Biological Evolution ; Geologic Sediments/chemistry ; History, Ancient ; Iron/*analysis/chemistry ; Oceans and Seas ; Seawater/*chemistry ; Sulfur/analysis/chemistry ; Sulfur Isotopes ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Earth-Science Reviews 163 (2016): 323-348, doi:10.1016/j.earscirev.2016.10.013.
    Description: Life requires a wide variety of bioessential trace elements to act as structural components and reactive centers in metalloenzymes. These requirements differ between organisms and have evolved over geological time, likely guided in some part by environmental conditions. Until recently, most of what was understood regarding trace element concentrations in the Precambrian oceans was inferred by extrapolation, geochemical modeling, and/or genomic studies. However, in the past decade, the increasing availability of trace element and isotopic data for sedimentary rocks of all ages have yielded new, and potentially more direct, insights into secular changes in seawater composition – and ultimately the evolution of the marine biosphere. Compiled records of many bioessential trace elements (including Ni, Mo, P, Zn, Co, Cr, Se, and I) provide new insight into how trace element abundance in Earth’s ancient oceans may have been linked to biological evolution. Several of these trace elements display redox-sensitive behavior, while others are redox-sensitive but not bioessential (e.g., Cr, U). Their temporal trends in sedimentary archives provide useful constraints on changes in atmosphere-ocean redox conditions that are linked to biological evolution, for example, the activity of oxygen-producing, photosynthetic cyanobacteria. In this review, we summarize available Precambrian trace element proxy data, and discuss how temporal trends in the seawater concentrations of specific trace elements may be linked to the evolution of both simple and complex life. We also examine several biologically relevant and/or redox-sensitive trace elements that have yet to be fully examined in the sedimentary rock record (e.g., Cu, Cd, W) and suggest several directions for future studies.
    Description: LJR gratefully acknowledges the support of a Vanier Canada Graduate Scholarship. Discovery Grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) to CAP, BK, DSA, SAC, and KOK supported this work. This material is based upon work supported by the National Aeronautics and Space Administration through the NASA Astrobiology Institute under Cooperative Agreement No. NNA15BB03A issued through the Science Mission Directorate. NJP receives support from the Alternative Earths NASA Astrobiology Institute. Funding from the NASA Astrobiology Institute, and the NSF FESD and ELT programs to TWL, and the Region of Brittany and LabexMER funding to SVL are also gratefully acknowledged. AB thanks the Society of Independent Thinkers.
    Keywords: Iron formations ; Black shales ; Eukaryotes ; Prokaryotes ; Evolution ; Trace elements ; Biolimitation ; Precambrian
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-20
    Description: During surveys in central Florida of the zombie-ant fungus Ophiocordyceps camponoti-floridani, which manipulates the behavior of the carpenter ant Camponotus floridanus, two distinct fungal morphotypes were discovered associated with and purportedly parasitic on O. camponoti-floridani. Based on a combination of unique morphology, ecology and phylogenetic placement, we discovered that these morphotypes comprise two novel lineages of fungi. Here, we propose two new genera, Niveomyces and Torrubiellomyces, each including a single species within the families Cordycipitaceae and Ophiocordycipitaceae, respectively. We generated de novo draft genomes for both new species and performed morphological and multi-loci phylogenetic analyses. The macromorphology and incidence of both new species, Niveomyces coronatus and Torrubiellomyces zombiae, suggest that these fungi are mycoparasites since their growth is observed exclusively on O. camponoti-floridani mycelium, stalks and ascomata, causing evident degradation of their fungal hosts. This work provides a starting point for more studies into fungal interactions between mycopathogens and entomopathogens, which have the potential to contribute towards efforts to battle the global rise of plant and animal mycoses.
    Keywords: Ecology ; Evolution ; Behavior and Systematics ; Hypocreales ; behaviour manipulation ; entomopathogenic fungi ; genomics ; mycoparasites ; new taxa ; taxonomy
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...