ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0378-1119
    Keywords: Collagen biosynthesis ; fibrosis
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4951
    Keywords: α-helical model system ; Conformational analysis ; Counterpoise method ; Hartree-Fock calculations ; Histamine H2 receptor ; Molecular mechanics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Summary Mutation studies on the histamine H2 receptor were reported by Gantz et al. [J. Biol. Chem., 267 (1992) 20840], which indicate that both the mutation of the fifth transmembrane Asp186 (to Ala186) alone or in combination with Thr190 (to Ala190) maintained, albeit partially, the cAMP response to histamine. Recently, we have shown that histamine binds to the histamine H2 receptor as a monocation in its proximal tautomeric form, and, moreover, we suggested that a proton is donated from the receptor towards the tele-position of the agonist, thereby triggering the biological effect [Nederkoorn et al., J. Mol. Graph., 12 (1994) 242; Eriks et al., Mol. Pharmacol., 44 (1993) 886]. These findings result in a close resemblance with the catalytic triad (consisting of Ser, His and Asp) found in serine proteases. Thr190 resembles a triad's serine residue closely, and could also act as a proton donor. However, the mutation of Thr190 to Ala190 — the latter is unable to function as a proton donor — does not completely abolish the agonistic cAMP response. At the fifth transmembrane α-helix of the histamine H2 receptor near the extracellular surface, another amino acid is present, i.e. Tyr182, so an alternative couple of amino acids, Tyr182 and Asp186, could constitute the histamine binding site at the fifth α-helix instead of the (mutated) couple Asp186 and Thr190. In the first part of our present study, this hypothesis is investigated with the aid of an oligopeptide with an α-helical backbone, which represents a part of the fifth transmembrane helix. Both molecular mechanics and ab initio data lead to the conclusion that the Tyr182/Asp186 couple is most likely to act as the binding site for the imidazole ring present in histamine.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-01-24
    Description: The advent of UV cameras has recently paved the way to volcanic SO2 flux observations of much improved temporal and spatial resolution, and has thus contributed to expanding use and utility of SO2 fluxes in volcano monitoring. Recently, the first examples of permanent UV camera systems have appeared that are now opening the way to routine fully automated monitoring of the volcanic SO2 flux at high-rate, and continuously (daily hours only). In 2014, using funding from the FP7-ERC project “Bridge” (http://www.bridge.unipa.it/), we deployed a network of 4 permanent UV cameras at Etna and Stromboli volcanoes (Sicily) that has been operating regularly since then. Using a suite of custom-built codes, data streamed by the UV camera are automatically processed and telemetered, allowing nearly real-time visualization and analysis of SO2 fluxes. Here, we summarise the key results obtained during the last 5 years of continuous observations (2014-2018) to demonstrate potentials and challenges in real-time continuous SO2 flux monitoring with UV cameras. We show that the spatially resolved SO2 flux time-series delivered by the UV camera allow effectively tracking migration in volcanic activity from the Central to New South-East Crater (Etna), and shifts in degassing activity along the crater terrace (Stromboli). At both volcanoes, the high temporal of UV cameras allows capturing the escalation in active (strombolian) SO2 degassing that typically precedes onset of paroxysmal (Etna in 2014-2016) or effusive (Stromboli in 2014) activity, and to quantify for the first time the syn- explosive SO2 budget for larger-scale explosions, including 2 paroxysmal lava fountains (Etna) and 1 major explosion (Stromboli). We finally demonstrate the ability of our automatic camera systems to capture temporal changes in SO2 flux regime, and thus to “live” monitoring degassing and eruptive behaviors at active volcanoes.
    Description: Published
    Description: Napoli
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Keywords: UV Camera ; SO2 Flux Monitoring ; Etna ; Stromboli
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-01-24
    Description: The persistent open-vent activity of basaltic volcanoes is periodically interrupted by spectacular but hazardous paroxysmal explosions. The rapid transition from quiescence to explosive eruption poses a significant challenge for volcanic hazard assessment and mitigation, and improving our understanding of the processes that trigger these paroxysmal events is critical. Although magmatic gas is unquestionably the driver, direct measurements of a paroxysm's gas flux budget have remained challenging, to date. A particularly violent paroxysmal sequence took place on Etna on December 2015, intermittently involving all summit craters, especially the Voragine (VOR) that had previously displayed no activity for several years. Here, we characterize the volcano's SO2 degassing budget prior to, during and after this paroxysmal sequence, using ground-based (UV-Camera) and satellite (OMI) observations, complemented with ground- and space-borne thermal measurements. We make use of the high spatial resolution of UV-cameras to resolve SO2 emissions from the erupting VOR crater for the first time, and to characterize temporal switches in degassing activity from VOR to the nearby New Southeast Crater (NSEC). Our data show that onset of paroxysmal activity on December 3–5 was marked by visible escalation in VOR SO2 fluxes (4,700–8,900 tons/day), in satellite-derived thermal emissions (2,000 MW vs. ~2–11 MW in July-November 2015), and in OMI-derived daily SO2 masses (5.4 ± 0.7 to 10.0 ± 1.3 kilotonnes, kt; 0.5 kt was the average in the pre-eruptive period). Switch in volcanic activity from VOR to NSEC on December 6 was detected by increasing SO2 fluxes at the NSEC crater, and by decaying SO2 emissions at VOR, until activity termination on December 19. Taken together, our observations infer the total degassed SO2 mass for the entire VOR paroxysmal sequence at 21,000 ± 2,730 t, corresponding to complete degassing of ~1.9 ± 0.3 Mm3 of magma, or significantly less than the measured erupted magma volumes (5.1–12 Mm3). From this mismatch we propose that only a small fraction of the erupted magma was actually emplaced in the shallow plumbing system during (or shortly prior) the paroxysmal sequence. Rather, the majority of the erupted magma was likely stored conduit magma, having gone through extensive degassing for days to weeks prior to the paroxysm.
    Description: Published
    Description: id 239
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: volcanic SO2 ; UV camera ; thermal remote sensing ; Etna ; basaltic paroxysms ; OMI
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Unknown
    Grand Rapids, Mich : Christian Classics Ethereal Library
    Keywords: Church of England, Sermons. ; Sermons, English.
    ISBN: 0-585-07463-1
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...