Skip to main content
Log in

The agonistic binding site at the histamine H2 receptor. I. Theoretical investigations of histamine binding to an oligopeptide mimicking a part of the fifth transmembrane α-helix

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Mutation studies on the histamine H2 receptor were reported by Gantz et al. [J. Biol. Chem., 267 (1992) 20840], which indicate that both the mutation of the fifth transmembrane Asp186 (to Ala186) alone or in combination with Thr190 (to Ala190) maintained, albeit partially, the cAMP response to histamine. Recently, we have shown that histamine binds to the histamine H2 receptor as a monocation in its proximal tautomeric form, and, moreover, we suggested that a proton is donated from the receptor towards the tele-position of the agonist, thereby triggering the biological effect [Nederkoorn et al., J. Mol. Graph., 12 (1994) 242; Eriks et al., Mol. Pharmacol., 44 (1993) 886]. These findings result in a close resemblance with the catalytic triad (consisting of Ser, His and Asp) found in serine proteases. Thr190 resembles a triad's serine residue closely, and could also act as a proton donor. However, the mutation of Thr190 to Ala190 — the latter is unable to function as a proton donor — does not completely abolish the agonistic cAMP response. At the fifth transmembrane α-helix of the histamine H2 receptor near the extracellular surface, another amino acid is present, i.e. Tyr182, so an alternative couple of amino acids, Tyr182 and Asp186, could constitute the histamine binding site at the fifth α-helix instead of the (mutated) couple Asp186 and Thr190. In the first part of our present study, this hypothesis is investigated with the aid of an oligopeptide with an α-helical backbone, which represents a part of the fifth transmembrane helix. Both molecular mechanics and ab initio data lead to the conclusion that the Tyr182/Asp186 couple is most likely to act as the binding site for the imidazole ring present in histamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weinstein H., Mazurek A.P., Osman R. and Topiol S., Mol. Pharmacol., 29 (1986) 28.

    Google Scholar 

  2. Gantz I., DelValle J., Wang L., Tashiro T., Munzert G., Guo Y.-J., Konda Y. and Yamada T., J. Biol. Chem., 267 (1992) 20840.

    Google Scholar 

  3. Nederkoorn P.H.J., Vernooijs P., Donné-Op den Kelder G.M., Baerends E.J. and Timmerman H., J. Mol. Graph., 12 (1994) 242.

    Google Scholar 

  4. Eriks J.C., Van der Goot H. and Timmerman H., Mol. Pharmacol., 44 (1993) 886.

    Google Scholar 

  5. Nagy P.I., Durant G.J., Hoss W.P. and Smith D.A., J. Am. Chem. Soc., 116 (1994) 4898.

    Google Scholar 

  6. Carter P. and Wells J.A., Nature, 332 (1988) 564.

    Google Scholar 

  7. Warshel A., Naray-Szabo G., Sussman F. and Hwang J.-K., Biochemistry, 28 (1989) 3629.

    Google Scholar 

  8. Gantz I., Munzert G., Tashiro T., Schäffer M., Wang L., DelValle J. and Yamada T., Biochem. Biophys. Res. Commun., 178 (1991) 1386.

    Google Scholar 

  9. Zubay G., In Biochemistry, Wm. C. Brown Publishers, Dubuque, IA, U.S.A., 1993.

    Google Scholar 

  10. Bashford D. and Karplus M., Biochemistry, 29 (1990) 10219.

    Google Scholar 

  11. Chem-X Reference Guide, Chemical Design Ltd., Oxon, U.K., July 1994.

  12. Darbey N.J. and Creighton T.E., In Rickwood D. (Ed.) Protein Structure, IRL Press, Oxford, U.K., 1993, pp. 1–22.

    Google Scholar 

  13. Oliveira L., Paiva A.M.C. and Vriend G., J. Comput.-Aided Mol. Design, 7 (1993) 649.

    Google Scholar 

  14. Némethy G. and Scheraga H.A., Rev. Biophys., 10 (1977) 239.

    Google Scholar 

  15. Vriend G. and Eijsink V., J. Comput.-Aided Mol. Design, 7 (1993) 367.

    Google Scholar 

  16. Cambridge Structural Database; Refcode hisahc 10: Bonnet J.J., Jeannin Y. and Laaouini M., Bull. Soc. Fr. Miner. Cri., 98 (1975) 208.

    Google Scholar 

  17. Ippolito J.A., Alexander R.S. and Christianson D.W., J. Biol. Chem., 215 (1990) 457.

    Google Scholar 

  18. Del Re G., Gavuzzo E., Giglio E., Lelj F., Mazza F. and Zappia V., Acta Crystallogr., B 33 (1977) 3289.

    Google Scholar 

  19. Van Duijneveldt-Van de Rijdt J.G.C.M. and Van Duijneveldt F.B., J. Am. Chem. Soc., 93 (1971) 5644.

    Google Scholar 

  20. Smit P.H., Derissen J.L. and Van Duijneveldt F.B., J. Chem. Phys., 67 (1977) 274.

    Google Scholar 

  21. GAMESS-UK is a package of ab initio programmes written by Guest, M.F., Van Lenthe, J.H., Kendrick, J., Schoeffel, K., Sherwood, P. and Harrison, R.J., with contributions from Amos, R.D., Buenker, R.J., Dupuis, M., Handy, N.C., Hillier, I.H., Knowles, P.J., Bonacic-Koutecky, V., Von Niessen, W., Saunders, V.R. and Stone, A.J. The package is derived from the original GAMESS code, see Ref. 22.

  22. Dupuis, M., Spangler, D. and Wendoloski, J., GAMESS, Natural Resource of Computational Chemistry Software Catalog, Vol. 1, Program No. QG01, 1980.

  23. Guest M.F., Fantucci P., Harrison R.J., Kendrick J., Van Lenthe J.H., Schoeffel K. and Sherwood P., GAMESS-UK User's Guide and Reference Manual, CFS Ltd., Daresbury Laboratory, Daresbury, U.K., 1993.

    Google Scholar 

  24. Van Lenthe J.H., Van Duijneveldt-Van de Rijdt J.G.C.M. and Van Duijneveldt F.B., In Lawley K.P. (Ed.) Ab Initio Methods in Quantum Chemistry, Wiley, New York, NY, U.S.A., 1987, pp. 521–565.

    Google Scholar 

  25. Kolos W., Theor. Chim. Acta, 54 (1980) 187.

    Google Scholar 

  26. Boys S.F. and Bernardi F., Mol. Phys., 19 (1970) 553.

    Google Scholar 

  27. Gutowski M., Van Duijneveldt-Van der Rijdt J.G.C.M., Van Lenthe J.H. and Van Duijneveldt F.B., J. Chem. Phys., 98 (1993) 4728.

    Google Scholar 

  28. Evans S.V., J. Mol. Graph., 11 (1993) 134.

    Google Scholar 

  29. Pyykkoe P. and Zhao Y., Report HUKI, 1 (1989) 89.

    Google Scholar 

  30. Sippl W., Stark H. and Höltje H.-D., Quant. Struct.-Act. Relatsh., 14 (1995) 121.

    Google Scholar 

  31. Marquart M., Walter J., Deisenhofer J., Bode W. and Huber R., Acta Crystallogr., B 39 (1983) 480.

    Google Scholar 

  32. Daggett V., Schröder S. and Kollman P., J. Am. Chem. Soc., 113 (1991) 8926.

    Google Scholar 

  33. Topiol S., Trends Biochem. Sci., 12 (1987) 419.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nederkoorn, P.H.J., van Lenthe, J.H., van der Goot, H. et al. The agonistic binding site at the histamine H2 receptor. I. Theoretical investigations of histamine binding to an oligopeptide mimicking a part of the fifth transmembrane α-helix. J Computer-Aided Mol Des 10, 461–478 (1996). https://doi.org/10.1007/BF00124476

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124476

Keywords

Navigation