ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Enzyme Activation  (2)
  • American Association for the Advancement of Science (AAAS)  (2)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (2)
Years
  • 1
    Publication Date: 1997-02-21
    Description: Bcl-2 is an integral membrane protein located mainly on the outer membrane of mitochondria. Overexpression of Bcl-2 prevents cells from undergoing apoptosis in response to a variety of stimuli. Cytosolic cytochrome c is necessary for the initiation of the apoptotic program, suggesting a possible connection between Bcl-2 and cytochrome c, which is normally located in the mitochondrial intermembrane space. Cells undergoing apoptosis were found to have an elevation of cytochrome c in the cytosol and a corresponding decrease in the mitochondria. Overexpression of Bcl-2 prevented the efflux of cytochrome c from the mitochondria and the initiation of apoptosis. Thus, one possible role of Bcl-2 in prevention of apoptosis is to block cytochrome c release from mitochondria.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, J -- Liu, X -- Bhalla, K -- Kim, C N -- Ibrado, A M -- Cai, J -- Peng, T I -- Jones, D P -- Wang, X -- New York, N.Y. -- Science. 1997 Feb 21;275(5303):1129-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9027314" target="_blank"〉PubMed〈/a〉
    Keywords: Apoproteins/metabolism ; *Apoptosis ; Caspase 3 ; *Caspases ; Cysteine Endopeptidases/metabolism ; Cytochrome c Group/*metabolism ; Cytochromes c ; Cytosol/metabolism ; DNA Fragmentation ; Enzyme Activation ; Etoposide/pharmacology ; HL-60 Cells ; HeLa Cells ; Humans ; Intracellular Membranes/metabolism ; Membrane Potentials/drug effects ; Mitochondria/*metabolism ; Poly(ADP-ribose) Polymerases/metabolism ; Proto-Oncogene Proteins c-bcl-2/genetics/*metabolism ; Staurosporine/pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-09-12
    Description: Activation of Rho guanosine triphosphatases (GTPases) to the guanine triphosphate (GTP)-bound state is a critical event in their regulation of the cytoskeleton and cell signaling. Members of the DOCK family of guanine nucleotide exchange factors (GEFs) are important activators of Rho GTPases, but the mechanism of activation by their catalytic DHR2 domain is unknown. Through structural analysis of DOCK9-Cdc42 complexes, we identify a nucleotide sensor within the alpha10 helix of the DHR2 domain that contributes to release of guanine diphosphate (GDP) and then to discharge of the activated GTP-bound Cdc42. Magnesium exclusion, a critical factor in promoting GDP release, is mediated by a conserved valine residue within this sensor, whereas binding of GTP-Mg2+ to the nucleotide-free complex results in magnesium-inducing displacement of the sensor to stimulate discharge of Cdc42-GTP. These studies identify an unusual mechanism of GDP release and define the complete GEF catalytic cycle from GDP dissociation followed by GTP binding and discharge of the activated GTPase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Jing -- Zhang, Ziguo -- Roe, S Mark -- Marshall, Christopher J -- Barford, David -- 10433/Cancer Research UK/United Kingdom -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2009 Sep 11;325(5946):1398-402. doi: 10.1126/science.1174468.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19745154" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Catalytic Domain ; Crystallography, X-Ray ; Enzyme Activation ; Guanine Nucleotide Exchange Factors/*chemistry/*metabolism ; Guanosine Diphosphate/*metabolism ; Guanosine Triphosphate/*metabolism ; Humans ; Magnesium/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; cdc42 GTP-Binding Protein/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...