ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-29
    Description: Ozone observations from ozonesondes, the lidars aboard the DC-8, in situ ozone measurements from the ER-2, and satellite ozone measurements from Polar Ozone and Aerosol Measurement III (POAM) were used to assess ozone loss during the Sage III Ozone Loss and Validation Experiment (SOLVE) 1999-2000 Arctic campaign. Two methods of analysis were used. In the first method a simple regression analysis is performed on the ozonesonde and POAM measurements within the vortex. In the second method, the ozone measurements from all available ozone data were injected into a free running diabatic trajectory model and carried forward in time from December 1 to March 15. Vortex ozone loss was then estimated by comparing the ozone values of those parcels initiated early in the campaign with those parcels injected later in the campaign. Despite the variety of observational techniques used during SOLVE, the measurements provide a fairly consistent picture. Over the whole vortex, the largest ozone loss occurs between 550 and 400 K potential temperatures (approximately 23-16 km) with over 1.5 ppmv lost by March 15, the end of the SOLVE mission period. An ozone loss rate of 0.04-0.05 ppmv/day was computed for March 15. Ozonesondes launched after March 15 suggest that an additional 0.5 ppmv or more ozone was lost between March 15 and April 1. The small disagreement between ozonesonde and POAM analysis of January ozone loss is found to be due to biases in vortex sampling. POAM makes most of its solar occultation measurements at the vortex edge during January 2000 which bias samples toward air parcels that have been exposed to sunlight and likely do experience ozone loss. Ozonesonde measurements and the trajectory technique use observations that are more distributed within the interior of the vortex. Thus the regression analysis of the POAM measurements tends to overestimate mid-winter vortex ozone loss. Finally, our loss calculations are broadly consistent with other loss computations using ER-2 tracer data and MLS satellite data, but we find no evidence for the 1992 high mid-January loss reported using the Match technique.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-05-22
    Description: Coastal regions have historically represented a significant challenge for air quality investigations because of water-land boundary transition characteristics and a paucity of measurements available over water. Prior studies have identified the formation of high levels of ozone over water bodies, such as the Chesapeake Bay, that can potentially recirculate back over land to significantly impact populated areas. Earth-observing satellites and forecast models face challenges in capturing the coastal transition zone where small-scale meteorological dynamics are complex and large changes in pollutants can occur on very short spatial and temporal scales. An observation strategy is presented to synchronously measure pollutants over land and over water to provide a more complete picture of chemical gradients across coastal boundaries for both the needs of state and local environmental management and new remote sensing platforms. Intensive vertical profile information from ozone lidar systems and ozonesondes, obtained at two main sites, one over land and the other over water, are complemented by remote sensing and in situ observations of air quality from ground-based, airborne (both personned and unpersonned), and shipborne platforms. These observations, coupled with reliable chemical transport simulations, such as the National Oceanic and Atmospheric Administration (NOAA) National Air Quality Forecast Capability (NAQFC), are expected to lead to a more fully characterized and complete landwater interaction observing system that can be used to assess future geostationary air quality instruments, such as the National Aeronautics and Space Administration (NASA) Tropospheric Emissions: Monitoring of Pollution (TEMPO), and current low-Earth-orbiting satellites, such as the European Space Agencys Sentinel-5 Precursor (S5-P) with its Tropospheric Monitoring Instrument (TROPOMI).
    Keywords: Environment Pollution
    Type: GSFC-E-DAA-TN68224 , BAMS: Bulletin of the American Meteorological Society (ISSN 0003-0007) (e-ISSN 1520-0477); 100; 2; 291-306
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-18
    Description: Knowledge of particle sizes and number densities of polar stratospheric clouds (PSCs) is highly important, because they are critical parameters for the modeling of the ozone chemistry of the stratosphere. In situ measurements of PSC particles are rare. the main instrument for the accumulation of PSC data are lidar systems. Therefore the derivation of some microphysical properties of PSCS from the optical parameters measured by lidars would be highly beneficial for ozone research. Inversion of lidar data obtained in the presence of PSCs formed from crystalline particles type 11 and the various nitric acid tri Ydrrate (NAT) types cannot be easily accomplished, because a suitable scattering theory for small faceted crystals has not been readily available tip to now. As a consequence, the T-matrix method is commonly used for the interpretation of these PSC lidar data. Here the assumption is made that the optical properties of an ensemble of spheroids resemble those of crystalline PSCs, and microphysical properties of the PSC are inferred from the optical signatures of the PSC at two or more wavelengths. The problem with the T-matrix approach is that the assumption of spheroidal instead of faceted particles can lead to dramatically wrong results: Usually cloud particle properties are deduced from analysis of lidar profiles of backscatter ratio and depolarization ratio. The particle contribution to the backscatter ratio is given by the product of the particle number density and the backscattering cross section. The latter is proportional to the value of the particle's scattering phase function at 180 degrees scattering angle. At 180 degrees however, the phase functions of rough, faceted crystals and of spheroids with same maximum dimension differ by a factor of 6. From this it follows that for a PSC consisting of faceted crystals, the particle number density is underestimated by roughly the same factor if spheroidal particles are unrealistically assumed. We are currently developing a retrieval technique for determining the microphysical parameters of crystalline PSCs that takes into account the faceted shape of the PSC particles. This approach utilizes finite-difference time-domain (FDTD) calculations of particle optical properties. The accuracy and the free choice of the shape of the scattering particle make the FDTD technique a promising tool for the inversion of PSC lidar data. A first comparison of FDTD and T-matrix calculations will be presented.
    Keywords: Environment Pollution
    Type: AGU Spring Meeting; May 29, 2001 - Jun 02, 2001; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: The AROTEL instrument is a collaboration between scientists at NASA, Goddard Space Flight Center and NASA Langley Research Center. The instrument was designed and constructed to be flown on the NASA DC-8, and to measure vertical profiles of ozone, temperature and aerosol. The instrument transmits radiation at 308, 355, 532, and 1064 nm. Depolarization is measured at 532 nm. In addition to the transmitted wavelengths, Raman scattered signals at 332 nm and 387 nm are also collected. The instrument was installed aboard the DC-8 for the SAGE III Ozone Loss and Validation Experiment (SOLVE) which deployed from Kiruna, Sweden, during the winter of 1999-2000 to study the polar stratosphere. During this time, profile measurements of polar stratospheric clouds, ozone and temperature were made. This paper provides an instrumental overview as an introduction to several data papers to be presented in the poster sessions. In addition to samples of the measurements, examples will be given to establish the quality of the various data products.
    Keywords: Environment Pollution
    Type: International Laser Radar Conference; Jul 10, 2000 - Jul 14, 2000; Vichy; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-17
    Description: During the winter of 1999-2000, the AROTEL instrument was deployed on the NASA DC-8 at Kiruna, Sweden for the SAGE III Ozone Loss Validation Experiment (SOLVE). Measurements of ozone, temperature and aerosols were made on 18 local science flights from December to March. Extremely low temperatures were observed throughout most of the Arctic vortex and polar stratospheric clouds were observed throughout the Arctic area during January. Significant ozone loss was measured after the sun began to rise on the vortex area in February. Ozone mixing ratios as low as 800 ppbv were observed during flights in March.
    Keywords: Environment Pollution
    Type: International Laser Radar Conference; Jul 10, 2000 - Jul 14, 2000; Vichy; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Description: Temperature profiles acquired by Goddard Space Flight Center's AROTEL lidar during the SOLVE mission onboard NASA's DC-8 are compared with predicted values from several atmospheric models (DAO, NCEP and UKMO). The variability in the differences between measured and calculated temperature fields was approximately 5 K. Retrieved temperatures within the polar vortex showed large regions that were significantly colder than predicted by the atmospheric models.
    Keywords: Environment Pollution
    Type: International Laser Radar Conference; Jul 10, 2000 - Jul 14, 2000; Vichy; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-18
    Description: As part of the NDSC, the GSFC mobile Ozone Lidar instrument has participated in numerous validation campaigns around the world. During all of these campaigns, ozonesondes were flown as part of the intercomparisons. This poster summarizes the results of these campaigns, and indicates that there are some biases between the sonde and lidar measurements.
    Keywords: Environment Pollution
    Type: NDSC 2001 Symposium; Sep 24, 2001 - Sep 27, 2001; Arcachon; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The airborne UV differential absorption lidar (DIAL) system participated in the Tropical Ozone Transport Experiment/Vortex Ozone Transport Experiment (TOTE/VOTE) in late 1995/early 1996. This mission afforded the opportunity to compare the DIAL system's stratospheric ozone measuring capability with other remote-sensing instruments through correlative measurements over a latitude range from the tropics to the Arctic. These instruments included ground-based DIAL and space-based stratospheric instruments: HALOE; MLS; and SAGE II. The ozone profiles generally agreed within random error estimates for the various instruments in the middle of the profiles in the tropics, but regions of significant systematic differences, especially near or below the tropopause or at the higher altitudes were also found. The comparisons strongly suggest that the airborne UV DIAL system can play a valuable role as a mobile lower-stratospheric ozone validation instrument.
    Keywords: Environment Pollution
    Type: Paper 98GL00231 , Geophysical Research Letters (ISSN 0094-8534); 25; 5; 623-626
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...