ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-12-03
    Description: This paper will describe the planned 3-year Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations (PICASSO) mission, its instrumentation and implementation. It will use LITE and other data, plus analyses, to show the feasibility of such a mission. PICASSO is being proposed for NASA's Earth System Science Pathfinder (ESSP) program with launch predicted in 2003.
    Keywords: Environment Pollution
    Type: Nineteenth International Laser Radar Conference; Part 2; 943-944; NASA/CP-1998-207671/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: The purpose of this paper is to present a vertically-resolved global climatology of water vapor in the upper troposphere and lower stratosphere based on multi-year SAGE 2 observations. Seasonally averaged zonal mean profiles are illustrated in terms of both mixing ration and relative humidity.
    Keywords: Environment Pollution
    Type: NASA-TM-111547 , NAS 1.15:111547
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: The current low confidence in the estimates of aerosol-induced perturbations of Earth's radiation balance is caused by the highly non-uniform compositional, spatial and temporal distributions of tropospheric aerosols on a global scale owing to their heterogeneous sources and short lifetimes. Nevertheless, recent studies have shown that the inclusion of aerosol effects in climate model calculations can improve agreement with observed spatial and temporal temperature distributions. In light of the short lifetimes of aerosols, determination of their global distribution with space-borne sensors seems to be a necessary approach. Until recently, satellite measurements of tropospheric aerosols have been approximate and did not provide the full set of information required to determine their radiative effects. With the advent of active aerosol remote sensing from space (e.g., PICASSO-CENA), the applicability fo lidar-derived aerosol 180 deg -backscatter data to radiative flux calculations and hence studies of aerosol effects on climate needs to be investigated.
    Keywords: Environment Pollution
    Type: 20th International Laser Radar Conference; Jul 10, 2000 - Jul 14, 2000; Vichy; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: Multiple satellite and ground-based observations provide consistent evidence that the thickness of Earth's protective ozone layer has stopped declining since 1997, close to the time of peak stratospheric halogen loading. Regression analyses with Effective Equivalent Stratospheric Chlorine (EESC) in conjunction with further analyses using more sophisticated photochemical model calculations constrained by satellite data demonstrate that the cessation of ozone depletion between 18-25 km altitude is consistent with a leveling off of stratospheric abundances of chlorine and bromine, due to the Montreal Protocol and its amendments. However, ozone increases in the lowest part of the stratosphere, from the tropopause to 18 km, account for about half of the improvement in total column ozone during the past 9 years at northern hemisphere mid-latitudes. The increase in ozone for altitudes below 18 km is most likely driven by changes in transport, rather than driven by declining chlorine and bromine. Even with this evidence that the Montreal Protocol and its amendments are having the desired, positive effect on ozone above 18 km, total column ozone is recovering faster than expected due to the apparent transport driven changes at lower altitudes. Accurate prediction of future levels of stratospheric ozone will require comprehensive understanding of the factors that drive temporal changes at various altitudes, and partitioning of the recent transport-driven increases between natural variability and changes in atmospheric structure perhaps related to anthropogenic climate change.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Satellite observations of total ozone at 40-60 deg N are presented from a variety of instruments over the time period 1979-1997. These reveal record low values in 1992-3 (after Pinatubo) followed by partial but incomplete recovery. The largest post-Pinatubo reductions and longer-term trends occur in spring, providing a critical test for chemical theories of ozone depletion. The observations are shown to be consistent with current understanding of the chemistry of ozone depletion when changes in reactive chlorine and stratospheric aerosol abundances are considered along with estimates of wave-driven fluctuations in stratospheric temperatures derived from global temperature analyses. Temperature fluctuations are shown to make significant contributions to model calculated northern mid-latitude ozone depletion due to heterogeneous chlorine activation on liquid sulfate aerosols at temperatures near 200-210 K (depending upon water vapor pressure), particularly after major volcanic eruptions. Future mid-latitude ozone recovery will hence depend not only on chlorine recovery but also on temperature trends and/or variability, volcanic activity, and any trends in stratospheric sulfate aerosol.
    Keywords: Environment Pollution
    Type: Paper-98GL01293 , Geophysical Research Letters (ISSN 0094-8534); 25; 11; 1871-1874
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: We present a formal error analysis and characterization of the microwave measurements made during the Stratospheric Ozone Intercomparison Campaign (STOIC). The most important error sources are found to be determination of the tropospheric opacity, the pressure-broadening coefficient of the observed line, and systematic variations in instrument response as a function of frequency ('baseline'). Net precision is 4-6% between 55 and 0.2 mbar, while accuracy is 6-10%. Resolution is 8-10 km below 3 mbar and increases to 17km at 0.2 mbar. We show the 'blind' microwave measurements from STOIC and make limited comparisons to other measurements. We use the averaging kernels of the microwave measurement to eliminate resolution and a priori effects from a comparison to SAGE 2. The STOIC results and comparisons are broadly consistent with the formal analysis.
    Keywords: Environment Pollution
    Type: NASA-TM-111178 , Paper-94JD00413 , NAS 1.15:111178 , (ISSN 0148-0227)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-10
    Description: We apply trajectory mapping to an eight-year intercomparison of ozone observations from HALOE (V19) and SAGE II (V6.00) for the months March, May, June, September, October, and December from the period December 1991 - October 1999. Our results, which represent the most extensive such intercomparison of these two data sets to date, suggest a root-mean -square difference between the two data sets of greater than 15% below 22 km and of 4 - 12% throughout most of the rest of the stratosphere. In addition, we find a bias with HALOE ozone low relative to SAGE II by 5 - 20% below 22 km between 40degS and 40degN. Biases throughout most of the rest of the stratosphere are nearly nonexistent. Finally, our analysis suggests almost no drift in the bias between the data sets is observed over the period of study. In the course of our study, we also determine that the employment of the Wang-Cunnold criteria is still recommended with the V6.00 SAGE II ozone data. Results with the new versions of the data sets show significant improvement over previous versions, particularly in the elimination of mid-stratospheric biases and the elimination of the previously observed drifts in the biases between the data sets in the lower stratosphere. Since HALOE V19 and V18 ozone are very similar, these changes can likely be attributed to improvements in the SAGE II retrieval.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-15
    Description: Balloon profiles of chlorine monoxide (ClO), nitric oxide (NO), and ozone (O3) were measured on March 11, 1992 from 100 to 10 mb over Greenland (67.0 deg N, 50.6 deg W). Measurements from SAGE II indicate that the aerosol surface area in the region was enhanced by sulfur from the eruption of Mt. Pinatubo, reaching 50 times background near 20 km. Concentrations of ClO were enhanced and concentrations of NO were suppressed relative to low aerosol conditions consistent with the effects of hydrolysis of N2O5 on the surface of sulfuric acid aerosols. The data are consistent with a value of 2 x 10(exp -4) for the reaction probability of the heterogeneous hydrolysis of ClONO2, indicating a minor role for this reaction at a temperature of 220 K. At these temperatures, we find no evidence for the catastrophic loss of ozone predicted to occur under conditions of enhanced aerosol surface area.
    Keywords: Environment Pollution
    Type: Airborne Arctic Stratospheric Expedition 2 Air Parcel Trajectories (ISSN 0094-8534); 20; 22; 2527-2530; NASA-TM-112699
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...