ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-12
    Description: Fine particulate matter with diameter of 2.5 microns or less (PM2.5) is associated with premature mortality and can travel long distances, impacting air quality and health on intercontinental scales. We estimate the mortality impacts of 20 % anthropogenic primary PM2.5 and PM2.5 precursor emission reductions in each of four major industrial regions (North America, Europe, East Asia, and South Asia) using an ensemble of global chemical transport model simulations coordinated by the Task Force on Hemispheric Transport of Air Pollution and epidemiologically-derived concentration-response functions. We estimate that while 93-97 % of avoided deaths from reducing emissions in all four regions occur within the source region, 3-7 % (11,500; 95 % confidence interval, 8,800-14,200) occur outside the source region from concentrations transported between continents. Approximately 17 and 13 % of global deaths avoided by reducing North America and Europe emissions occur extraregionally, owing to large downwind populations, compared with 4 and 2 % for South and East Asia. The coarse resolution global models used here may underestimate intraregional health benefits occurring on local scales, affecting these relative contributions of extraregional versus intraregional health benefits. Compared with a previous study of 20 % ozone precursor emission reductions, we find that despite greater transport efficiency for ozone, absolute mortality impacts of intercontinental PM2.5 transport are comparable or greater for neighboring source-receptor pairs, due to the stronger effect of PM2.5 on mortality. However, uncertainties in modeling and concentration-response relationships are large for both estimates.
    Keywords: Environment Pollution
    Type: GSFC-E-DAA-TN14045 , Air Quality, Atmosphere and Health
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: In this study, we assess changes of aerosol optical depth (AOD) and direct radiative forcing (DRF) in response to the reduction of anthropogenic emissions in four major pollution regions in the northern hemisphere by using results from 10 global chemical transport models in the framework of the Hemispheric Transport of Air Pollution (HTAP). The multi-model results show that on average, a 20% reduction of anthropogenic emissions in North America, Europe, East Asia and South Asia lowers the global mean AOD and DRF by about 9%, 4%, and 10% for sulfate, organic matter, and black carbon aerosol, respectively. The impacts of the regional emission reductions on AOD and DRF extend well beyond the source regions because of intercontinental transport. On an annual basis, intercontinental transport accounts for 10-30% of the overall AOD and DRF in a receptor region, with domestic emissions accounting for the remainder, depending on regions and species. While South Asia is most influenced by import of sulfate aerosol from Europe, North America is most influenced by import of black carbon from East Asia. Results show a large spread among models, highlighting the need to improve aerosol processes in models and evaluate and constrain models with observations.
    Keywords: Environment Pollution
    Type: GSFC.JA.6598.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The impacts of climate change on tropospheric transport, diagnosed from a carbon monoxide (CO)-like tracer species emitted from global CO sources, are evaluated from an ensemble of four chemistry-climate model (CCMs) contributing to the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Model time-slice simulations for present-day and end of the 21st century conditions were performed under the Representative Concentrations Pathways (RCP) climate scenario RCP 8.5. All simulations reveal a strong seasonality in transport, especially over the tropics. The highest CO-tracer mixing ratios aloft occur during boreal winter when strong vertical transport is co-located with biomass burning emission source regions. A consistent and robust decrease in future CO-tracer mixing ratios throughout most of the troposphere, especially in the tropics, and an increase around the tropopause is found across the four CCMs in both winter and summer. Decreases in CO-tracer mixing ratios in the tropical troposphere are associated with reduced convective mass fluxes in this region, which in turn may reflect a weaker Hadley Cell circulation in the future climate. Increases in CO-tracer mixing ratios near the tropopause are largely attributable to a rise in tropopause height, although a poleward shift in the midlatitude jets may also play an important role in the extra-tropical upper troposphere. An increase in CO-tracer mixing ratios also occurs near the Equator, centred over EquatorialCentral Africa, extending from the surface to the mid troposphere which is most likely related to localised decreases in convection in the vicinity of the Intertropical Convergence Zone, resulting in larger CO-tracer mixing ratios over biomass burning regions and smaller mixing ratios downwind.
    Keywords: Environment Pollution
    Type: GSFC-E-DAA-TN64979 , Atmospheric Chemistry and Physics (ISSN 1680-7316) (e-ISSN 1680-7324); 17; 23; 14219-14237
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-10
    Description: We examine the climate response to solar irradiance changes between the late 17th century Maunder Minimum and the late 18th century. Global average temperature changes are small (about 0.3 to 0.4 C) in both a climate model and empirical reconstructions. However, regional temperature changes are quite large. In the model, these occur primarily through a forced shift toward the low index state of the Arctic Oscillation/North Atlantic Oscillation. This leads to colder temperatures over the Northern Hemisphere continents, especially in winter (1 to 2 C), in agreement with historical records and proxy data for surface temperatures.
    Keywords: Environment Pollution
    Type: GCN-02-09 , RE1064363/CJT/GEOCHEM-PHYS
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-10
    Description: A tropospheric chemistry module has been developed for use within the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to study interactions between chemistry and climate change. The model uses a simplified chemistry scheme based on CO-NOx-CH4 chemistry, and also includes a parameterization for emissions of isoprene, the most important non-methane hydrocarbon. The model reproduces present day annual cycles and mean distributions of key trace gases fairly well, based on extensive comparisons with available observations. Examining the simulated change between present day and pre-industrial conditions, we find that the model has a similar response to that seen in other simulations. It shows a 45% increase in the global tropospheric ozone burden, within the 25% - 57% range seen in other studies. Annual average zonal mean ozone increases by more than 125% at Northern Hemisphere middle latitudes near the surface. Comparison of model runs that allow the calculated ozone to interact with the GCM's radiation and meteorology with those that do not shows only minor differences for ozone. The common usage of ozone fields that are not calculated interactively seems to be adequate to simulate both the present day and the pre-industrial ozone distributions. However, use of coupled chemistry does alter the change in tropospheric oxidation capacity, enlarging the overall decrease in OH concentrations from the pre-industrial to the present by about 10% (-5.3% global annual average in uncoupled mode, -5.9% in coupled mode). This indicates that there may be systematic biases in the simulation of the pre-industrial to present day decrease in the oxidation capacity of the troposphere (though a 10% difference is well within the total uncertainty). Global annual average radiative forcing from pre-industrial to present day ozone change is 0.32 W/sq m. The forcing seems to be increased by about 10% when the chemistry is coupled to the GCM. Forcing values greater than 0.8 W/sq m are seen over large areas of the United States, Southern Europe, North Africa, the Middle East, Central Asia, and the Arctic. Radiative forcing is greater than 1.5 W/sq m over parts of these areas during Northern summer Though there are local differences, the radiative forcing is overall in good agreement with the results of other modeling studies in both its magnitude and spatial distribution, demonstrating that the simplified chemistry is adequate for climate studies.
    Keywords: Environment Pollution
    Type: GCN-01-14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-10
    Description: Stratospheric water vapor abundance affects ozone, surface climate, and stratospheric temperatures. From 30-50 km altitude, temperatures show global decreases of 3-6 K over recent decades. These may be a proxy for water vapor increases, as the Goddard Institute for Space Studies (GISS) climate model reproduces these trends only when stratospheric water vapor is allowed to increase. Observations suggest that stratospheric water vapor is indeed increasing, however, measurements are extremely limited in either spatial coverage or duration. The model results suggest that the observed changes may be part of a global, long-term trend. Furthermore, the required water vapor change is too large to be accounted for by increased production within the stratosphere, suggesting that ongoing climate change may be altering tropospheric input. The calculated stratospheric water vapor increase contributes an additional approximately equals 24% (approximately equals 0.2 W/m(exp 2)) to the global warming from well-mixed greenhouse gases over the past two decades. Observed ozone depletion is also better reproduced when destruction due to increased water vapor is included. If the trend continues, it could increase future global warming and impede stratospheric ozone recovery.
    Keywords: Environment Pollution
    Type: GCN-01-01
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-10
    Description: The Goddard Institute for Space Studies (GISS) climate/middle atmosphere model has been used to study the impacts of increasing greenhouse gases, polar ozone depletion, volcanic eruptions, and solar cycle variability. We focus on the projection of the induced responses onto Northern Hemisphere winter surface climate. Changes in the model's surface climate take place largely through enhancement of existing variability patterns, with greenhouse gases, polar ozone depletion and volcanic eruptions primarily affecting the Arctic Oscillation (AO) pattern. Perturbations descend from the stratosphere to the surface in the model by altering the propagation of planetary waves coming up from the surface, in accord with observational evidence. Models lacking realistic stratospheric dynamics fail to capture these wave flux changes. The results support the conclusion that the stratosphere plays a crucial role in recent AO trends. We show that in our climate model, while ozone depletion has a significant effect, greenhouse gas forcing is the only one capable of causing the large, sustained increase in the AO observed over recent decades. This suggests that the AO trend, and a concurrent strengthening of the stratospheric vortex over the Arctic, are very likely anthropogenic in origin.
    Keywords: Environment Pollution
    Type: GCN-01-02
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Simulations of stratospheric geoengineering with black carbon (BC) aerosols using a general circulation model with fixed sea surface temperatures show that the climate effects strongly depend on aerosol size and altitude of injection. 1 Tg BC/a injected into the lower stratosphere would cause little surface cooling for large radii but a large amount of surface cooling for small radii and stratospheric warming of over 60 C. With the exception of small particles, increasing the altitude of injection increases surface cooling and stratospheric warming. Stratospheric warming causes global ozone loss by up to 50% in the small radius case. The Antarctic shows less ozone loss due to reduction of polar stratospheric clouds, but strong circumpolar winds would enhance the Arctic ozone hole. Using diesel fuel to produce the aerosols is likely prohibitively expensive and infeasible. Although studying an absorbing aerosol is a useful counterpart to previous studies involving sulfate aerosols, black carbon geoengineering likely carries too many risks to make it a viable option for deployment.
    Keywords: Environment Pollution
    Type: GSFC-E-DAA-TN8939 , GSFC-E-DAA-TN8939 , Journal of Geophysical Research; 117; D9; D09203
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: This paper introduces an initiative to bridge the state of scientific knowledge on air pollution with the needs of policymakers and stakeholders to design the "next generation" of air quality indicators. As a first step this initiative assesses current monitoring and modeling associated with a number of important pollutants with an eye toward identifying knowledge gaps and scientific needs that are a barrier to reducing air pollution impacts on human and ecosystem health across the globe. Four outdoor air pollutants were considered e particulate matter, ozone, mercury, and Persistent Organic Pollutants (POPs) e because of their clear adverse impacts on human and ecosystem health and because of the availability of baseline data for assessment for each. While other papers appearing in this issue will address each pollutant separately, this paper serves as a summary of the initiative and presents recommendations for needed investments to provide improved measurement, monitoring, and modeling data for policyrelevant indicators. The ultimate goal of this effort is to enable enhanced public policy responses to air pollution by linking improved data and measurement methods to decision-making through the development of indicators that can allow policymakers to better understand the impacts of air pollution and, along with source attribution based on modeling and measurements, facilitate improved policies to solve it. The development of indicators represents a crucial next step in this process.
    Keywords: Environment Pollution
    Type: GSFC-E-DAA-TN11373 , Atmospheric Environment; 80; 561-570
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...