ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Environment Pollution  (1)
Collection
Keywords
Years
  • 1
    Publication Date: 2019-07-13
    Description: Nonmethane hydrocarbons (NMHCs) and halocarbons were measured in the troposphere over the northwestern Pacific as part of the airborne component of NASA's Pacific Exploratory Mission-West Phase B (PEM-West B). This study took place in late winter of 1994, a period characterized by maximum outflow from the Asian continent. The results are compared to those from Pacific Exploratory Mission-West Phase A (PEM-West A), which was flown in the same region during late summer of 1991, when flow from the subtropical western Pacific dominated the lower troposphere. Mixing ratios of NMHCs, tetrachloroethene (C2Cl4), and methyl bromide (CH3Br) were significantly higher during PEM-West B than during PEM-West A, particularly at latitudes north of 25 deg N and altitudes lower than 6 km. The primary reasons for these higher ambient concentrations were the seasonal increase in the atmospheric lifetimes of trace gases controlled by HO radical reactions, and the more frequent input of continental air masses. During PEM-West B, air masses of continental origin observed north of 25 deg N latitude were augmented with urban signature gases such as C2Cl4. By contrast, more southerly continental outflow had characteristics associated with combustion sources such as biomass burning, including wood fuel burning. During the summer PEM-West A period, the spatial distribution of methyl iodide (CH3I) was consistent with effective oceanic sources at all latitudes, being especially strong in tropical and subtropical regions. At low latitudes, PEM-West B CH3I mixing ratios in the lower troposphere were similar to PEM-West A, but at latitudes greater than about 25 deg N PEM-West B concentrations were significantly reduced. Equatorial regions exhibited enhanced CH3I mixing ratios extending into the upper tropical troposphere, consistent with fast vertical transport of air from the tropical marine boundary layer.
    Keywords: Environment Pollution
    Type: Paper-97JD02538 , Journal of Geophysical Research (ISSN 0148-0227); 102; D23; 28,315-28,331
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...