ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2004-12-03
    Beschreibung: GOME radiance, irradiance, and ozone products were validated by NASA Goddard Space Flight Center through three tasks which included, pre-launch calibration comparisons with SBUV and TOMS radiometric standards, validation of GOME Level-1 irradiance and radiance and Level 2 total ozone data products using SBUV/2 and TOMS algorithms and data, and studies of GOME data using the Goddard radiative transfer code. The prelaunch calibration using the NASA large aperture integrating sphere was checked against that provided by TPD. Agreement in the calibration constants, derived in air, between the Goddard and TPD system were better than 3%. Validation of Level-1 irradiance data included comparison of GOME and SSBUV and the UARS solar irradiances measurements. Large wavelength dependent differences, as high as 10%, were noted between GOME and the US instruments. This discrepancy has now been attributed to radiometric sensitivity changes experienced by GOME when operating in a vacuum. GOME Earth radiance data were then compared to the NOAA-14 SBUV/2 radiances. These results show that between 340 and 400 nm the differences in GOME and SBUV/2 data are less than 5% with some wavelength dependence. At wavelengths shorter than 300 nm, differences are of the order of 10% or more where the GOME radiances are larger. To test GOME DOAS retrieved total ozone values, these values were compared with ozone amounts retrieved using GOME radiances in the TOMS version-7 algorithm. The differences showed a solar zenith angle dependence ranging from 0 to 10% where the TOMS algorithm values were higher. GOME radiances below 300 nm were further validated by selecting radiances at wavelengths normally used by SBUV and processing them through the SBUV ozone profile algorithm and then compared to climatological values. The GOME ozone profiles ranged from 10-30% lower over altitude compared to climatological values. This is consistent with the offsets detected in the SBUV/2 radiance comparisons at wavelengths shorter than 300 nm.
    Schlagwort(e): Geophysics
    Materialart: US Participation in the GOME and SCIAMACHY Projects; 85-91; NASA-CR-202573
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2018-06-06
    Beschreibung: The Ozone Monitoring Instrument (OMI) aboard NASA's Aura satellite observed substantial increases in total column SO2 and tropospheric column NO2 from 2005 to 2007, over several areas in northern China where large coal-fired power plants were built during this period. The OMI-observed SO2/NO2 ratio is consistent with the SO2/ NO2, emissions estimated from a bottom-up approach. In 2008 over the same areas, OMI detected little change in NO2, suggesting steady electricity output from the power plants. However, dramatic reductions of S0 2 emissions were observed by OMI at the same time. These reductions confirm the effectiveness of the flue-gas desulfurization (FGD) devices in reducing S02 emissions, which likely became operational between 2007 and 2008. This study further demonstrates that the satellite sensors can monitor and characterize anthropogenic emissions from large point sources.
    Schlagwort(e): Environment Pollution
    Materialart: Geophysical Research Letters; Volume 37
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-07-18
    Beschreibung: The Ozone Monitoring Instrument (OMI) was launched successfully in July 2004, as one of four instruments on the EOS Aura satellite. OMI makes hyperspectral measurements that are used to retrieve column densities of critical trace gases, including formaldehyde, BrO, SO2 and NO2 . We present the first results from the OM1 operational NO2 algorithm and demonstrate its ability to retrieve the tropospheric and stratospheric components of NO2. The DOAS method is used to determine slant column densities, and initial air mass factors (AMFs) are used. to give initial estimates of the vertical column densities (VCDs). VCDs from up to 15 consecutive orbits are collected, and a spatial filtering technique is applied to extract the synoptic-scale features characteristic of the stratospheric, field. features to be evidence of tropospheric excess NO2 , and apply an AMF appropriate to polluted conditions, to obtain an improved retrieval of the NO2 total VCD. We describe the assumptions underlying the algorithm in detail, and show global maps of NO2 VCDs, based on the first operational data from OMI.
    Schlagwort(e): Environment Pollution
    Materialart: 2004 Fall AGU Meeting; Dec 13, 2004 - Dec 17, 2004; San Francisco, CA
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-07-13
    Beschreibung: We present a retrieval of tropospheric nitrogen dioxide (NO2) columns from the Global Ozone Monitoring Experiment (GOME) satellite instrument that improves in several ways over previous retrievals, especially in the accounting of Rayleigh and cloud scattering. Slant columns, which are directly fitted without low-pass filtering or spectral smoothing, are corrected for an artificial offset likely induced by spectral structure on the diffuser plate of the GOME instrument. The stratospheric column is determined from NO2 columns over the remote Pacific Ocean to minimize contamination from tropospheric NO2. The air mass factor (AMF) used to convert slant columns to vertical columns is calculated from the integral of the relative vertical NO2 distribution from a global 3-D model of tropospheric chemistry driven by assimilated meteorological data (Global Earth Observing System (GEOS)-CHEM), weighted by altitude dependent scattering weights computed with a radiative transfer model (Linearized Discrete Ordinate Radiative Transfer), using local surface albedos determined from GOME observations at NO2 wavelengths. The AMF calculation accounts for cloud scattering using cloud fraction, cloud top pressure, and cloud optical thickness from a cloud retrieval algorithm (GOME Cloud Retrieval Algorithm). Over continental regions with high surface emissions, clouds decrease the AMT by 20- 30% relative to clear sky. GOME is almost twice as sensitive to tropospheric NO2 columns over ocean than over land. Comparison of the retrieved tropospheric NO2 columns for July 1996 with GEOS-CHEM values tests both the retrieval and the nitrogen oxide radical (NOx) emissions inventories used in GEOS-CHEM. Retrieved tropospheric NO2 columns over the United States, where NOx emissions are particularly well known, are within 18% of GEOS-CHEM columns and are strongly spatially correlated (r = 0.78, n = 288, p less than 0.005). Retrieved columns show more NO2 than GEOS-CHEM columns over the Transvaal region of South Africa and industrial regions of the northeast United States and Europe. They are lower over Houston, India, eastern Asia, and the biomass burning region of central Africa, possibly because of biases from absorbing aerosols.
    Schlagwort(e): Environment Pollution
    Materialart: Journal of Geophysical Research (ISSN 0148-0227); 107; D20; 9-1 - 9-21
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2019-07-19
    Beschreibung: The measurement of both SO2 and NO2 gases are recognized as an essential component of atmospheric composition missions. We describe current capabilities and limitations of the operational Aura/OMI NO2 and SO2 data that have been used by a large number of researchers. Analyses of the data and validation studies have brought to light a number of areas in which these products can be expanded and improved. Major improvements for new NASA standard (SP) NO2 product include more accurate tropospheric and stratospheric column amounts, along with much improved error estimates and diagnostics. Our approach uses a monthly NO2 climatology based on the NASA Global Modeling Initiative (GMI) chemistry-transport model and takes advantage of OMI data from cloudy scenes to find clean areas where the contribution from the trap NO2 column is relatively small. We then use a new filtering, interpolation and smoothing techniques for separating the stratospheric and tropospheric components of NO2, minimizing the influence of a priori information. The new algorithm greatly improves the structure of stratospheric features relative to the original SP. For the next-generation OMI SO2 product we plan to implement operationally the offline iterative spectral fitting (ISF) algorithm and re-process the OMI Level-2 SO2 dataset using a priori SO2 and aerosol profiles, clouds, and surface reflectivity appropriate for observation conditions. This will improve the ability to detect and quantify weak tropospheric SO2 loadings. The new algorithm is validated using aircraft in-situ data during field campaigns in China (2005 and 2008) and in Maryland (Frostburg, 2010 and DISCOVER-AQ in July 2011). The height of the SO2 plumes will also be estimated for high SO2 loading cases (e.g., volcanic eruptions). The same SO2 algorithm will be applied to the data from OMPS sensor to be launched on NPP satellite later this year. The next-generation NO2 and SO2 products will provide critical information (e.g., averaging kernels) for evaluation of chemistry-transport models, for data assimilation, and to impose top-down constraints on the SO2 and NO2 emission sources.
    Schlagwort(e): Environment Pollution
    Materialart: GSFC.ABS.5495.2011
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2019-07-18
    Beschreibung: Instruments such as the Global Ozone Monitoring Experiment (GOME, on the European Remote Sensing Satellite (ERS-2), launched 1995), the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY, on ENVISAT, to be launched July 2001) and the Ozone Monitoring Instrument (OMI on EOS Aura, to be launched 2003) make measurements of the total column of NO2. There is interest in separating the stratospheric and tropospheric contributions to the column, as the tropospheric column provides a measure of pollution. We are using a 3D chemistry and transport model driven by winds from the Goddard Space Flight Center Data Assimilation System to examine variability in the stratospheric NO2 column. Model results for NOx = NO + NO2 + 2N2O5 will be shown to compare well with sunset observations from the Halogen Occultation Experiment on the Upper Atmosphere Research Satellite, and to exhibit similar temporal and spatial dependence. Partitioning between NO, NO2, and N2O5 is also shown to compare well with observations. This good agreement supports the use of simulated fields in the stratosphere to derive the tropospheric column from the total column. Preliminary comparisons of the tropospheric column with model simulations for the troposphere will also be shown.
    Schlagwort(e): Geophysics
    Materialart: 8th International Association of Meteorology and Atmospheric Sciences Symposium; Jul 10, 2001 - Jul 18, 2001; Innsbruck; Austria
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    In:  Other Sources
    Publikationsdatum: 2019-07-17
    Beschreibung: Measuring tropospheric chemical constituents from space has been only of the "Holy Grails" of remote sensing. Tropospheric remote sensing has been done in two phases, extracting troposheric constituent information from satellite instruments designed for other purposes and constituent measurements with instruments optimized for tropospheric detection. Examples from the first phase, tropospheric ozone and aerosols from Total Ozone Mapping Spectrometer (TOMS) and Global Ozone Monitoring Experiment (GOME) will be presented. Expected results from upcoming instruments and missions, Atmospheric Ultraviolet Radiance Analyzer (AURA), Ozone Monitoring Instrument (OMI), GOME2, and Scanning Imaging Spectrometer for Atmospheric Chartography (SCIAMACHY) will be presented.
    Schlagwort(e): Geophysics
    Materialart: Telluride Academy Conference; Aug 06, 2000 - Aug 12, 2000; Telluride, CO; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2019-07-19
    Beschreibung: Satellite instruments flown since 1970 have had great success in elucidating the processes that control stratospheric ozone. In contrast, space-based data for tropospheric constituents that affect air quality and climate have only recently become available. While these datasets highlight the rapidly advancing capabilities of spacebased tropospheric sensors, they are also pointing to the limitations of sun-synchronous, low-earth orbiting (SSO/LEO) satellite platforms for making such measurements. In our talk we will highlight the science requirements for new missions and the technological and algorithmic approaches that we are developing to meet these requirements. From these studies a clear need for advanced atmospheric composition sensors has emerged that can be put on geostationary (GEO) platforms to provide 5 km horizontal resolution with 15-60 minutes repeat cycle. Such measurements have been high priority in the recently released Decadal Survey report by the US National Research Council. The need for GEO is driven not only by the science requirements to track rapidly changing pollution events but also by the need to provide altitude-resolved information about tropospheric constituents. Currently, with the exception of aerosols, it is not possible to derive profile information about lower tropospheric constituents from satellite measurements. New algorithmic approaches are being developed to obtain this information by combining UV and IR data, by monitoring the spatial and temporal structures of the constituents, and by using low-level clouds to separate boundary layer constituents from free troposphere. All these approaches require better spatial and temporal resolution than that provided by LEO sensors.
    Schlagwort(e): Geophysics
    Materialart: Quadrennial Ozone Symposium 2008/International Ozone Commission and European Commission; Jun 29, 2008 - Jul 05, 2008; Tromso; Norway
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2019-07-19
    Beschreibung: Satellite instruments have had great success in monitoring the stratospheric ozone and in understanding the processes that control its daily to decadal scale variations. This field is now reaching its zenith with a number of satellite instruments from the US, Europe and Canada capping several decades of active research in this field. The primary public policy imperative of this research was to make reliable prediction of increases in biologically active surface UV radiation due to human activity. By contrast retrieval from satellite data of atmospheric constituents and photo-chemically active radiation that affect air quality is a new and growing field that is presenting us with unique challenges in measurement and data interpretation. A key distinction compared to stratospheric sensors is the greatly enhanced role of clouds, aerosols, and surfaces (CAS) in determining the quality and quantity of useful data that is available for air quality research. In our presentation we will use data from several sensors that are currently flying on the A-train satellite constellation, including OMI, MODIS, CLOUDSAT, and CALIPSO, to highlight that CAS can have both positive and negative effects on the information content of satellite measurements. This is in sharp contrast to other fields of remote sensing where CAS are usually considered an interference except in those cases when they are the primary subject of study. Our analysis has revealed that in the reflected wavelengths one often sees much further down into the atmosphere, through most cirrus, than one does in the emitted wavelengths. The lower level clouds provide a nice background against which one can track long-range transport of trace gases and aerosols. In addition, differences in trace gas columns estimated over cloudy and adjacent clear pixels can be used to measure boundary layer trace gases. However, in order to take full advantage of these features it will be necessary to greatly advance our understanding of how CAS affect the radiation at wavelengths that are used to derive the atmospheric constituents that affect air quality as well as the radiation that controls the photolysis of chemically active trace gases. We will discuss how we are using these new insights to design future satellite missions to study air quality.
    Schlagwort(e): Environment Pollution
    Materialart: International Radiation Symposium 2008; Aug 01, 2008 - Aug 10, 2008; Foz do Iguacu; Brazil
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2019-07-19
    Beschreibung: The Ozone Monitoring Instrument has gathered daily global data on NO2 and other atmospheric trace gases since its launch on the EOS Aura satellite in 2004. The large accumulated data set makes it possible to monitor changes of both meteorological and anthropogenic origin in tropospheric NOz amounts. In particular, averages on time scales on the order of a year show a distinct 'weekend effect' in NO2 variation, with smaller NO2 amounts seen on Saturday and/or Sunday than on the remaining weekdays. Using the OMI NO2 Standard Product (SP), we examine this effect in relation to geopolitical boundaries and investigate implications for identifying sources. We also use the SP data to find evidence for other short-term anthropogenic changes in NO2 emissions over heavily polluted regions including the United States, Europe and China.
    Schlagwort(e): Geophysics
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...