ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-04-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baughman, Ray H -- New York, N.Y. -- Science. 2005 Apr 1;308(5718):63-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉NanoTech Institute and Department of Chemistry, University of Texas at Dallas, Richardson, TX 75083, USA. ray. baughman@utdallas.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15802593" target="_blank"〉PubMed〈/a〉
    Keywords: *Artificial Organs ; Biomechanical Phenomena ; *Biomimetic Materials ; Elastomers ; Electric Capacitance ; Electric Conductivity ; Electrochemistry ; Electrodes ; *Muscles/physiology ; Nanostructures ; Nanotubes, Carbon ; *Polymers ; Robotics ; Static Electricity ; Stress, Mechanical
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-10-15
    Description: Rotary motors of conventional design can be rather complex and are therefore difficult to miniaturize; previous carbon nanotube artificial muscles provide contraction and bending, but not rotation. We show that an electrolyte-filled twist-spun carbon nanotube yarn, much thinner than a human hair, functions as a torsional artificial muscle in a simple three-electrode electrochemical system, providing a reversible 15,000 degrees rotation and 590 revolutions per minute. A hydrostatic actuation mechanism, as seen in muscular hydrostats in nature, explains the simultaneous occurrence of lengthwise contraction and torsional rotation during the yarn volume increase caused by electrochemical double-layer charge injection. The use of a torsional yarn muscle as a mixer for a fluidic chip is demonstrated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Foroughi, Javad -- Spinks, Geoffrey M -- Wallace, Gordon G -- Oh, Jiyoung -- Kozlov, Mikhail E -- Fang, Shaoli -- Mirfakhrai, Tissaphern -- Madden, John D W -- Shin, Min Kyoon -- Kim, Seon Jeong -- Baughman, Ray H -- New York, N.Y. -- Science. 2011 Oct 28;334(6055):494-7. doi: 10.1126/science.1211220. Epub 2011 Oct 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW 2522, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21998253" target="_blank"〉PubMed〈/a〉
    Keywords: *Biomimetic Materials ; Electrodes ; Electrolytes ; *Muscles ; *Nanotubes, Carbon ; Rotation ; Torque ; Torsion, Mechanical
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...