ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (8)
  • Earth Resources and Remote Sensing  (6)
  • ELECTRONICS AND ELECTRICAL ENGINEERING  (2)
  • 1
    Publication Date: 2019-07-13
    Description: This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It accounts for the overlapping of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure. Effects of sub-grid scale cloud and aerosol variations on DRE are accounted for. It is computationally efficient through using grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table in radiative transfer calculations. We verified that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous shortwave DRE that generally agrees with more rigorous pixel-level computation within 4. We have also computed the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global ocean based on 4 yr of CALIOP and MODIS data. We found that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN13269 , Atmospheric Measurement and Techniques (AMT); 7; 1777-1789
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: The synergistic use of active and passive remote sensing (i.e., data fusion) demonstrates the ability of spaceborne light detection and ranging (LiDAR), synthetic aperture radar (SAR) and multispectral imagery for achieving the accuracy requirements of a global forest biomass mapping mission. This data fusion approach also provides a means to extend 3D information from discrete spaceborne LiDAR measurements of forest structure across scales much larger than that of the LiDAR footprint. For estimating biomass, these measurements mix a number of errors including those associated with LiDAR footprint sampling over regional - global extents. A general framework for mapping above ground live forest biomass (AGB) with a data fusion approach is presented and verified using data from NASA field campaigns near Howland, ME, USA, to assess AGB and LiDAR sampling errors across a regionally representative landscape. We combined SAR and Landsat-derived optical (passive optical) image data to identify forest patches, and used image and simulated spaceborne LiDAR data to compute AGB and estimate LiDAR sampling error for forest patches and 100m, 250m, 500m, and 1km grid cells. Forest patches were delineated with Landsat-derived data and airborne SAR imagery, and simulated spaceborne LiDAR (SSL) data were derived from orbit and cloud cover simulations and airborne data from NASA's Laser Vegetation Imaging Sensor (L VIS). At both the patch and grid scales, we evaluated differences in AGB estimation and sampling error from the combined use of LiDAR with both SAR and passive optical and with either SAR or passive optical alone. This data fusion approach demonstrates that incorporating forest patches into the AGB mapping framework can provide sub-grid forest information for coarser grid-level AGB reporting, and that combining simulated spaceborne LiDAR with SAR and passive optical data are most useful for estimating AGB when measurements from LiDAR are limited because they minimized forest AGB sampling errors by 15 - 38%. Furthermore, spaceborne global scale accuracy requirements were achieved. At least 80% of the grid cells at 100m, 250m, 500m, and 1km grid levels met AGB density accuracy requirements using a combination of passive optical and SAR along with machine learning methods to predict vegetation structure metrics for forested areas without LiDAR samples. Finally, using either passive optical or SAR, accuracy requirements were met at the 500m and 250m grid level, respectively.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.ABS.7426.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: The use of lidar and radar instruments to measure forest structure attributes such as height and biomass at global scales is being considered for a future Earth Observation satellite mission, DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice). Large footprint lidar makes a direct measurement of the heights of scatterers in the illuminated footprint and can yield accurate information about the vertical profile of the canopy within lidar footprint samples. Synthetic Aperture Radar (SAR) is known to sense the canopy volume, especially at longer wavelengths and provides image data. Methods for biomass mapping by a combination of lidar sampling and radar mapping need to be developed. In this study, several issues in this respect were investigated using aircraft borne lidar and SAR data in Howland, Maine, USA. The stepwise regression selected the height indices rh50 and rh75 of the Laser Vegetation Imaging Sensor (LVIS) data for predicting field measured biomass with a R(exp 2) of 0.71 and RMSE of 31.33 Mg/ha. The above-ground biomass map generated from this regression model was considered to represent the true biomass of the area and used as a reference map since no better biomass map exists for the area. Random samples were taken from the biomass map and the correlation between the sampled biomass and co-located SAR signature was studied. The best models were used to extend the biomass from lidar samples into all forested areas in the study area, which mimics a procedure that could be used for the future DESDYnI Mission. It was found that depending on the data types used (quad-pol or dual-pol) the SAR data can predict the lidar biomass samples with R2 of 0.63-0.71, RMSE of 32.0-28.2 Mg/ha up to biomass levels of 200-250 Mg/ha. The mean biomass of the study area calculated from the biomass maps generated by lidar- SAR synergy 63 was within 10% of the reference biomass map derived from LVIS data. The results from this study are preliminary, but do show the potential of the combined use of lidar samples and radar imagery for forest biomass mapping. Various issues regarding lidar/radar data synergies for biomass mapping are discussed in the paper.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.JA.5750.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: A new architecture is presented for a multibit oversampled Sigma-Delta A/D convertor. A novel feedback arrangement is employed to reduce the sensitivity of the overall resolution to the nonlinearity of the multibit DAC. Simulations confirm the improved performance achieved by the proposed structure.
    Keywords: ELECTRONICS AND ELECTRICAL ENGINEERING
    Type: Electronics Letters (ISSN 0013-5194); 27; 990
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: Nonuniformly quantized multibit oversampled Sigma-Delta A/D convertors are proposed which achieve high SNR over a wide dynamic range. Simulation results are presented for first- and second-order 4 bit Sigma-Delta A/D convertors with companding internal quantizers.
    Keywords: ELECTRONICS AND ELECTRICAL ENGINEERING
    Type: Electronics Letters (ISSN 0013-5194); 27; 528
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-12-11
    Description: Clearsky contamination is a challenging and longlasting problem for cloud optical thickness () and effective droplet radius (r(sub eff)) retrievals using passive satellite sensors. This study explores the feasibility of improving both and r(sub eff) retrievals for partly cloudy (PCL) pixels by using available subpixel samples in a visible to nearinfrared band, which many satellite sensors offer. Data are provided by highresolution reflectance (R) observations and cloud property retrievals by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) at horizontal resolutions between 30960m. For partly cloudy 960m observations, the clearsky component of the pixels induces significant underestimations of up to 58% for , while overestimations in r(sub eff) can exceed 41%. This yields underestimations in the derived liquid water path and cloud droplet number concentration of up to 68% and 72%, respectively. By means of three different assumptions it is shown that subpixel R observations in the visible to nearinfrared band can be used to estimate higherresolution R for the second band in the retrieval scheme, as well as the subpixel cloud cover. The estimated values compare well to actually observed ASTER results and are used to retrieve cloud properties, which are unbiased by the clearsky component of PCL pixels. While the presented retrieval approach is only evaluated for marine boundary layer clouds, it is computationally efficient and can be easily applied to observations from different imagers. As an example, the PCL retrieval scheme is applied to data by the Moderate Resolution Imaging Spectroradiometer, where similar biases for PCL pixels are observed.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN62585 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 123; 21; 12,253-12,276
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: This study presents preliminary results on the effect of cirrus heterogeneities on top-of-atmosphere (TOA) simulated radiances or reflectances for MODIS channels centered at 0.86, 2.21, 8.56, 11.01 and 12.03 micrometers , and on cloud optical properties retrieved with a research-level optimal estimation method (OEM). Synthetic cirrus cloud fields are generated using a 3D cloud generator (3DCLOUD) and radiances/reflectances are simulated using a 3D radiative transfer code (3DMCPOL). We find significant differences between the heterogeneity effects on either visible and near-infrared (VNIR) or thermal infrared (TIR) radiances. However, when both wavelength ranges are combined, heterogeneity effects are dominated by the VNIR horizontal radiative transport effect. As a result, small optical thicknesses are overestimated and large ones are underestimated. Retrieved effective diameter are found to be slightly affected, contrarily to retrievals using TIR channels only.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN37465 , International Radiation Symposium (IRS 2016); Apr 16, 2016 - Apr 22, 2016; Auckland; New Zealand
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: TOOLS SHAREAbstractRecently, Zhang et al. (2016) presented a mathematical framework based on a secondorder Taylor series expansion in order to quantify the planeparallel homogeneous bias (PPHB) in cloud optical thickness () and effective droplet radius (r(sub eff)) retrieved from the bispectral solar reflective method. This study provides observational validation of the aforementioned framework, using highresolution reflectance observations from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) over 48 marine boundary layer cloud scenes. ASTER reflectances at a horizontal resolution of 30 m are aggregated up to a scale of 1,920 m, providing retrievals of and r(sub eff) at different spatial resolutions. A comparison between the PPHB derived from these retrievals and the predicted PPHB from the mathematical framework reveals a good agreement with correlation coefficients of r 〉 0.97 (for ) and r 〉 0.79 (for r(sub eff)). To test the feasibility of PPHB predictions for present and future satellite missions, a scale analysis with varying horizontal resolutions of the subpixel and pixellevel observations is performed, followed by tests of corrections with only limited observational highresolution data. It is shown that for reasonably thick clouds with a mean subpixel larger than 5, correlations between observed and predicted PPHB remain high, even if the number of available subpixels decreases or just a single band provides the information about subpixel reflectance variability. Only for thin clouds the predicted r(sub eff) become less reliable, which can be attributed primarily to an increased retrieval uncertainty for r(sub eff).
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN56863 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 123; 8; 4239-4258
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...