ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earth Resources and Remote Sensing  (2)
  • Boundary currents  (1)
  • 1
    Publication Date: 2019-07-13
    Description: During the last two plus decades, The Goddard Earth Observing System (GEOS) and Massachusetts Institute of Technology (MIT) modeling groups have developed, respectively, atmosphere-only and ocean-only global general circulation models. These two models (GEOS and MITgcm) have demonstrated their data assimilation capabilities with the recent releases of the Modern Era Reanalysis for Research Applications, Version 2 (MERRA-2) atmospheric reanalysis and the Estimating the Circulation and Climate of the Ocean, Version 4 (ECCO-v4) ocean (and sea ice) state estimate. Independently, the two modeling groups have also produced global atmosphere-only and ocean-only simulations with km-scale grid spacing which proved invaluable for process studies and for the development of satellite and in-situ sampling strategies.Recently, a new effort has been made to couple these two models and to leverage their data-assimilation and high resolution capabilities (i.e., eddy-permitting ocean, cloud-permitting atmosphere). The focus in the model development is put on sub-seasonal to decadal time scales. In this talk, I discuss the new coupled model and present some first coupled simulation results. This will include a high-resolution coupled GEOS-MIT simulation, whereby we have coupled a cubed-sphere-720 (~ 1/8 deg) configuration of the GEOS atmosphere to a lat-lon-cap-1080 (~ 1/12 deg) configuration of the MIT ocean. We compare near-surface diagnostics of this fully coupled ocean-atmosphere set-up to equivalent atmosphere-only and ocean-only simulations. In the comparisons we focus in particular on the differences in air-sea interactions between sea surface temperature (SST) and wind for the coupled and uncoupled simulations.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN62546 , GSFC-E-DAA-TN62544 , IMS Seminar; Oct 16, 2018; Bet Dagan; Israel
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: During the last two plus decades, The Goddard Earth Observing System (GEOS) and Massachusetts Institute of Technology (MIT) modeling groups have developed, respectively, atmosphere-only and ocean-only global general circulation models. These two models (GEOS and MITgcm) have demonstrated their data assimilation capabilities with the recent releases of the Modern Era Reanalysis for Research Applications, Version 2 (MERRA-2) atmospheric reanalysis and the Estimating the Circulation and Climate of the Ocean, Version 4 (ECCO-v4) ocean (and sea ice) state estimate. Independently, the two modeling groups have also produced global atmosphere-only and ocean-only simulations with km-scale grid spacing which proved invaluable for process studies and for the development of satellite and in-situ sampling strategies.Recently, a new effort has been made to couple these two models and to leverage their data-assimilation and high resolution capabilities (i.e., eddy-permitting ocean, cloud-permitting atmosphere). The focus in the model development is put on sub-seasonal to decadal time scales. In this talk, I discuss the new coupled model and present some first coupled simulation results. This will include a high-resolution coupled GEOS-MIT simulation, whereby we have coupled a cubed-sphere-720 (~ 1/8) configuration of the GEOS atmosphere to a lat-lon-cap-1080 (~ 1/12) configuration of the MIT ocean. We compare near-surface diagnostics of this fully coupled ocean-atmosphere set-up to equivalent atmosphere-only and ocean-only simulations. In the comparisons we focus in particular on the differences in air-sea interactions between sea surface temperature (SST) and wind for the coupled and uncoupled simulations.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN62549 , GSFC-E-DAA-TN62548 , Weizmann Institute of Science Department of Earth and Planetary Sciences Seminar; Oct 14, 2018; Rehovot; Israel|Tel Aviv University Department of Geophysics Seminar; Oct 15, 2018; Tel Aviv; Israel
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(6), (2019): 1577-1592, doi:10.1175/JPO-D-18-0124.1.
    Description: The main source feeding the abyssal circulation of the North Pacific is the deep, northward flow of 5–6 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) through the Samoan Passage. A recent field campaign has shown that this flow is hydraulically controlled and that it experiences hydraulic jumps accompanied by strong mixing and dissipation concentrated near several deep sills. By our estimates, the diapycnal density flux associated with this mixing is considerably larger than the diapycnal flux across a typical isopycnal surface extending over the abyssal North Pacific. According to historical hydrographic observations, a second source of abyssal water for the North Pacific is 2.3–2.8 Sv of the dense flow that is diverted around the Manihiki Plateau to the east, bypassing the Samoan Passage. This bypass flow is not confined to a channel and is therefore less likely to experience the strong mixing that is associated with hydraulic transitions. The partitioning of flux between the two branches of the deep flow could therefore be relevant to the distribution of Pacific abyssal mixing. To gain insight into the factors that control the partitioning between these two branches, we develop an abyssal and equator-proximal extension of the “island rule.” Novel features include provisions for the presence of hydraulic jumps as well as identification of an appropriate integration circuit for an abyssal layer to the east of the island. Evaluation of the corresponding circulation integral leads to a prediction of 0.4–2.4 Sv of bypass flow. The circulation integral clearly identifies dissipation and frictional drag effects within the Samoan Passage as crucial elements in partitioning the flow.
    Description: This work was supported by the National Science Foundation under Grants OCE-1029268, OCE-1029483, OCE-1657264, OCE-1657870, OCE-1658027, and OCE-1657795. We thank the captain, crew, and engineers at APL/UW for their hard work and skill.
    Description: 2020-06-11
    Keywords: Abyssal circulation ; Bottom currents ; Boundary currents ; Channel flows ; Mixing ; Transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...