ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Forschungsdaten  (4)
  • Costa Rica; LaSelva_CR; MULT; Multiple investigations  (2)
  • EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 SEDIMENTS  (2)
Sammlung
  • Forschungsdaten  (4)
Schlagwörter
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
  • 2
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Fernandez-Bou, Angel Santiago; Dierick, Diego; Swanson, Amanda Cantu; Allen, Michael Fred; Alvarado, Ana Grace Fitzimons; Artavia-León, Allan; Carrasquillo-Quintana, Odemaris; Lachman, Deo Anthony; Oberbauer, Steven F; Pinto-Tomás, Adrián; Rodríguez-Reyes, Yorelyz; Schwendenmann, Luitgard; Zelikova, Tamara Jane; Harmon, Thomas Christopher (2019): The Role of the Ecosystem Engineer, the Leaf‐Cutter Ant Atta cephalotes, on Soil CO2 Dynamics in a Wet Tropical Rainforest. Journal of Geophysical Research: Biogeosciences, 124(2), 260-273, https://doi.org/10.1029/2018JG004723
    Publikationsdatum: 2023-06-10
    Beschreibung: This data set contains CO2 measurements related to leaf cutter ants (Atta cephalotes) and ancillary data taken at La Selva Biological Station, Costa Rica. The data sets are (1) soil CO2 concentrations measurements on nest, non-nest and abandoned nests from 2015 to 2018, (2) soil CO2 emissions measurements on nest, non-nest and abandoned nests from June 2017 to August 2017, and (3) nest vent CO2 emission measurements from June 2017 to August 2017. It as well includes the code to analyze the data with generalized linear mixed models, correlation of soil CO2 concentration with moving average precipitation at several depths, and plots of soil CO2 emissions and volumetric water content on on nest, non-nest and abandoned nests. Finally, it includes the raw results of the code.
    Schlagwort(e): Costa Rica; LaSelva_CR; MULT; Multiple investigations
    Materialart: Dataset
    Format: application/zip, 6 datasets
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-01-05
    Beschreibung: Abstract
    Beschreibung: The Central Andean orogeny is caused by the subduction of the Nazca oceanic plate beneath the South-American continental plate. In Particular, the Southern Central Andes (SCA, 27°-40°S) are characterized by a strong N-S and E-W variation in the crustal deformation style and intensity. Despite being the surface geology relatively well known, the information on the deep structure of the upper plate in terms of its thickness and density configurations is still scarcely constrained. Previous seismic studies have focused on the crustal structure of the northern part of the SCA (~27°-33°S) based upon 2D cross-sections, while 3D crustal models centred on the South-American or the Nazca Plate have been published with lower resolution. To gain insight into the present-day state of the lithosphere in the area, we derived a 3D model that is consistent with both the available geological and seismic data and with the observed gravity field. The model consists on a continental plate with sediments, a two-layer crust and the lithospheric mantle being subducted by an oceanic plate. The model extension covers an area of 700 km x 1100 km, including the orogen, the forearc and the forelands.
    Beschreibung: Methods
    Beschreibung: Different data sets were integrated to derive the lithospheric features: - We used the global relief model of ETOPO1 (Amante and Eakins 2009) for the topography and bathymetry. - The sub-surface structures were defined by integrating seismically constrained models, including the South-American crustal thickness of Assumpção et al. (2013; model A; 0.5 degree resolution), the sediment thickness of CRUST1 (Laske et al. 2013) and the slab geometry of SLAB2 (Hayes et al. 2018). - Additionally, we included seismic reflection and refraction profiles performed on the Chile margin (Araneda et al. 2003; Contreras-Reyes et al. 2008, 2014, 2015; Flueh et al. 1998; Krawzyk et al. 2006; Moscoso et al. 2011; Sick et al. 2006; Von Huene et al. 1997). - Besides, we used sediment thickness maps from the intracontinental basin database ICONS (6 arc minute resolution, Heine 2007) and two oceanic sediment compilations: one along the southern trench axis (Völker et al. 2013) and another of global-scale (GlobSed; Straume et al. 2019). To build the interfaces between the main lithospheric features, we compiled and interpolated these datasets on a regular grid with a surface resolution of 25 km. For that purpose, the convergent algorithm of the software Petrel was used. We assigned constant densities within each layer, except for the lithospheric mantle. In this case, we implemented a heterogeneous distribution by converting s-wave velocities from the SL2013sv seismic tomography (Schaeffer and Lebedev 2013) to densities. The python tool VelocityConversion was used for the conversion (Meeßen 2017). To further constrain the crustal structure of the upper plate, a gravity forward modelling was carried out using IGMAS+ (Schmidt et al. 2010). The gravity anomaly from the model (calculated gravity) was compared to the free-air anomaly from the global gravity model EIGEN-6C4 (observed gravity; Förste et al 2014; Ince et al. 2019). Subsequently, the crystalline crust of the upper plate was split vertically into two layers of different densities. We inverted the residual between calculated and observed gravity to compute the depth to the interface between the two crustal layers. For the inverse modelling of the gravity residual, the Python package Fatiando a Terra was used (Uieda et al. 2013) For each layer, the depth to the top surface, thickness and density can be found as separate files. All files contain identical columns: - Northing as "X Coord (UTM zone 19S)"; - Easting as "Y Coord (UTM zone 19S)"; - depth to the top surface as "Top (m.a.s.l)" and - thickness of each layer as "Thickness (m)". The header ‘Density’ indicates the bulk density of each unit in kg/m3. For the oceanic and continental mantle units, a separate file is provided with a regular grid of the density distribution with a lateral resolution of 8 km x 9 km and a vertical resolution of 5 km. The containing columns are: Northing as "X Coord (UTM zone 19S)"; Easting as "Y Coord (UTM zone 19S)"; depth as "Depth (m.a.s.l)" and density as "Density (kg/m3)"
    Schlagwort(e): Lithosphere ; Gravity Modelling ; Andes ; EARTH SCIENCE ; EARTH SCIENCE 〉 LAND SURFACE 〉 TOPOGRAPHY 〉 TOPOGRAPHICAL RELIEF ; EARTH SCIENCE 〉 OCEANS 〉 BATHYMETRY/SEAFLOOR TOPOGRAPHY 〉 BATHYMETRY ; EARTH SCIENCE 〉 SOLID EARTH ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC LANDFORMS 〉 MOUNTAINS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC PROCESSES 〉 SUBDUCTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 SEDIMENTS ; EARTH SCIENCE SERVICES 〉 MODELS 〉 GEOLOGIC/TECTONIC/PALEOCLIMATE MODELS
    Materialart: Dataset , Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-01-05
    Beschreibung: Abstract
    Beschreibung: The Central Andean orogen formed as a result of the subduction of the oceanic Nazca plate beneath the continental South-American plate. In the southern segment of the Central Andes (SCA, 29°S-39°S), the oceanic plate subducts beneath the continental plate with distinct dip angles from north to south. Subduction geometry, tectonic deformation, and seismicity at this plate boundary are closely related to lithospheric temperature distribution in the upper plate. Previous studies provided insights into the present-day thermal field with focus on the surface heat flow distribution in the orogen or through modelling of the seismic velocity distribution in restricted regions of the SCA as indirect proxy of the deep thermal field. Despite these recent advances, the information on the temperature distribution at depth of the SCA lithosphere remains scarcely constrained. To gain insight into the present-day thermal state of the lithosphere in the region, we derived the 3D lithospheric temperature distribution from inversion of S-wave velocity to temperature and calculations of the steady state thermal field. The configuration of the region – concerning both, the heterogeneity of the lithosphere and the slab dip – was accounted for by incorporating a 3D data-constrained structural and density model of the SCA into the workflow (Rodriguez Piceda et al. 2020a-b). The model consists on a continental plate with sediments, a two-layer crust and the lithospheric mantle being subducted by an oceanic plate. The model extension covers an area of 700 km x 1100 km, including the orogen (i.e. magmatic arc, main orogenic wedge), the forearc and the foreland, and it extents down to 200 km depth.
    Beschreibung: Methods
    Beschreibung: To predict the temperature distribution in the SCA, the model volume was subdivided into two domains: (1) a shallow domain, including the crust and uppermost mantle to a depth of ~50 km below mean sea level (bmsl), where the steady-state conductive thermal field was calculated using as input the 3D structural and density model of the area (Rodriguez Piceda et al., 2020a-b); (2) a deep domain between a depth of ~50 and 200 km bmsl, where temperatures were converted from S wave seismic velocities (Assumpção et al., 2013) using the approach by Goes et al. (2000) as implemented in the python tool VelocityConversion (Meeßen 2017). The 3D model of Rodriguez Piceda et al. (2020) consists of the following layers: (1) water; (2) oceanic sediments; (3) continental sediments; (4) upper continental crystalline crust; (5) lower continental crystalline crust; (6) continental lithospheric mantle (7) shallow oceanic crust; (8) deep oceanic crust; (9) oceanic lithospheric mantle; and (10) oceanic sub-lithospheric mantle. For the computation of temperatures in the shallow domain, three main modifications were made to the 3D model of Rodriguez Piceda et al. (2020a-b). First, we removed the water layer thus considering the topography/bathymetry as the top of the model. Second, the horizontal resolution was increased to 5 km and, third, the layers were vertically refined by a factor of 3 to 32. We assigned constant thermal properties (bulk conductivity λ and radiogenic heat production S) to each layer of the model according to each lithology (Alvarado et al. 2007, 2009; Ammirati et al. 2013, 2015, 2018; Araneda et al., 2003; Brocher, 2005; Čermák and Rybach, 1982; Contreras-Reyes et al., 2008; Christensen & Mooney, 1995; Gilbert et al., 2006; Hasterok & Chapman, 2011; He et al., 2008; Marot et al., 2014, Pesicek et al., 2012; Rodriguez Piceda et al., 2020; Scarfi & Barbieri, 2019; Vilà et al.,2010; Wagner et al., 2005; Xu et al., 2004). The steady-state conductive thermal field in the shallow domain was calculated applying the Finite Element Method as implemented in the software GOLEM (Cacace & Jacquey, 2017; Jacquey & Cacace, 2017). For the computation, we assigned fixed temperatures along the top and base of the model as thermal boundary conditions. The upper boundary condition was set at the topography/bathymetry and it is the temperature distribution from the ERA-5 land data base (Muñoz Sabater, 2019). The lower boundary condition was set at a constant depth of 50 km bmsl for areas where the Moho is shallower than 50 km bmsl and at the Moho depth proper where this interface is deeper than the abovementioned threshold. The temperature distribution at this boundary condition was calculated from the conversion of S-wave velocities to temperatures (Assumpção et al., 2013).
    Schlagwort(e): Lithosphere ; Andes ; Subduction ; Thermal Model ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC LANDFORMS 〉 MOUNTAINS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC PROCESSES 〉 SUBDUCTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS 〉 GEOTHERMAL TEMPERATURE ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS 〉 GEOTHERMAL TEMPERATURE 〉 TEMPERATURE PROFILES ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 SEDIMENTS ; EARTH SCIENCE SERVICES 〉 MODELS 〉 GEOLOGIC/TECTONIC/PALEOCLIMATE MODELS
    Materialart: Dataset , Dataset
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...