ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ATP  (1)
  • Dimethyl sulphoxide reduction  (1)
  • 1
    ISSN: 1432-0789
    Keywords: Microbial biomass ; Dehydrogenase activity Urease ; Phosphatase ; Respiration ; ATP ; Grazing Fertiliser ; Lime
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A field study was conducted to determine the influence of a short-term (2 year) cessation of fertiliser applications, liming, and sheep-grazing on microbial biomass and activity in a reseeded upland grassland soil. The cessation of fertiliser applications (N and NPK) on a limed and grazed grassland had no effect on microbial biomass measurements, enzyme activities, or respiration. Withholding fertiliser and lime from a grazed grassland resulted in significant reductions in both microbial biomass C (P〈0.05) and dehydrogenase activity (P〈0.05) by approximately 18 and 21%, respectively. The removal of fertiliser applications, liming, and grazing resulted in even greater reductions in microbial biomass C (44%, P〈0.001) and dehydrogenase activity (31%, P〈0.001), and significant reductions in microbial biomass N (P〈0.005), urease activity (P〈0.05), phosphatase activity (P〈0.001), and basal respiration (P〈0.05). The abundance of culturable bacteria and fungi and the soil ATP content were unaffected by changes in grassland managements. With the cessation of liming soil pH fell from 5.4 to 4.7, and the removal of grazing resulted in a further reduction to pH 4.5. A significant negative linear relationship (r 2=0.97; P〈0.01) was found between increasing soil acidity and dehydrogenase activity. Possible mechanisms influencing these changes are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0789
    Keywords: Heavy metals ; Microbial biomass ; Respiration ; Enzymes ; Denitrification ; Dimethyl sulphoxide reduction ; Nematodes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Microbial properties and nematode abundance were measured along a gradient of increasing Cu, Cr, and As concentrations (50–1300 mg Cr kg-1) in the top 5 cm of a pasture soil contaminated by runoff of preserving liquor from an adjacent timber-treatment plant. Microbial biomass C and N were significantly (P〈0.05) lower in contaminated than uncontaminated soils. The amount of microbial biomass C as a percentage of total organic C declined significantly (r 2 value with Cr 0.726*) with increasing contamination, and the ratio of respired C to biomass C was significantly (P〈0.05) higher with contamination. Substrate-induced respiration, microbial biomass P, and denitrification declined (r2 value with Cr 0.601, 0.833*, and 0.709*, respectively) with increasing contamination. Increasing contamination had no effect on prokaryote substrate-induced respiration but eukaryote: eukaryote substrate-induced respiration declined significantly (r 2 value with Cr 0.722*). Accordingly, the ratio of prokaryote substrate-induced respiration increased significantly (r 2 value with Cr 0.799*) with contamination. There was a significant (r 2 value with Cr 0.872*) hyperbolic relationship between sulphatase activity and contamination, with activity declining by approximately 80% at 〉1000 mg Cr kg-1. Increasing contamination had no effect on basal respiration, dimethyl sulphoxide reduction, and phosphatase, urease, and invertase activities. Numbers of plant-associated nematodes declined significantly (r 2 value with Cr 0.780*) with contamination. On a percentage basis, plant-feeding nematodes predominated in less contaminated soils, whereas bacterial-feeding and predatory nematodes predominated in heavily contaminated soils. The use of the fumigation—incubation procedure for measurement of microbial biomass C in heavy-metal contaminated soils is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...