ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Deep Sea Drilling Project; DSDP; Ocean Drilling Program; ODP  (5)
Collection
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Sibert, Elizabeth C; Hull, Pincelli M; Norris, Richard D (2014): Resilience of Pacific pelagic fish across the Cretaceous/Palaeogene mass extinction. Nature Geoscience, 7(9), 667-670, https://doi.org/10.1038/ngeo2227
    Publication Date: 2024-01-09
    Description: Open ocean ecosystems experienced profound disruption in biodiversity and structure during the Cretaceous-Paleogene (K-Pg) mass extinction ~66 million years ago. Extinction scenarios have suggested that a collapse of phytoplankton production rippled up the food chain causing wholesale loss of consumers and top predators. Pelagic fishes represent a key trophic link between primary producers and top predators and provide a means to examine the influence of trophic relationships during extinctions. Here we show that there is geographic heterogeneity in the abundance of fishes through the mass extinction using the accumulation rate of ichthyoliths (i.e., microscopic fish teeth and shark dermal scales). In the Tethys Sea, fish abundance falls abruptly at the boundary and remains depressed for at least 3 million years. In contrast, fish abundance in the Pacific Ocean remained at or above pre-boundary levels for at least four million years following the mass extinction, despite drastic extinctions in co-occurring primary producers and zooplankton consumers. Geographic differences in these post-disaster ecosystems suggest that the mass extinction did not produce a uniformly "dead" ocean or microbially dominated system, but instead supported, at least regionally, ecosystems with mid-trophic level abundances similar to or above those of the Late Cretaceous.
    Keywords: Deep Sea Drilling Project; DSDP; Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 13 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bice, Karen L; Birgel, Daniel; Meyers, Philip A; Dahl, Kristina A; Hinrichs, Kai-Uwe; Norris, Richard D (2006): A multiple proxy and modeling study of Cretaceous upper ocean temperatures and atmospheric CO2 concentrations. Paleoceanography, 21(1), PA2002, https://doi.org/10.1029/2005PA001203
    Publication Date: 2024-01-09
    Description: We estimate tropical Atlantic upper ocean temperatures using oxygen isotope and Mg/Ca ratios in well-preserved planktonic foraminifera extracted from Albian through Santonian black shales recovered during Ocean Drilling Program Leg 207 (North Atlantic Demerara Rise). On the basis of a range of plausible assumptions regarding seawater composition at the time the data support temperatures between 33° and 42°C. In our low-resolution data set spanning ~84-100 Ma a local temperature maximum occurs in the late Turonian, and a possible minimum occurs in the mid to early late Cenomanian. The relation between single species foraminiferal d18O and Mg/Ca suggests that the ratio of magnesium to calcium in the Turonian-Coniacian ocean may have been lower than in the Albian-Cenomanian ocean, perhaps coincident with an ocean 87Sr/86Sr minimum. The carbon isotopic compositions of distinct marine algal biomarkers were measured in the same sediment samples. The d13C values of phytane, combined with foraminiferal d13C and inferred temperatures, were used to estimate atmospheric carbon dioxide concentrations through this interval. Estimates of atmospheric CO2 concentrations range between 600 and 2400 ppmv. Within the uncertainty in the various proxies, there is only a weak overall correspondence between higher (lower) tropical temperatures and more (less) atmospheric CO2. The GENESIS climate model underpredicts tropical Atlantic temperatures inferred from ODP Leg 207 foraminiferal d18O and Mg/Ca when we specify approximate CO2 concentrations estimated from the biomarker isotopes in the same samples. Possible errors in the temperature and CO2 estimates and possible deficiencies in the model are discussed. The potential for and effects of substantially higher atmospheric methane during Cretaceous anoxic events, perhaps derived from high fluxes from the oxygen minimum zone, are considered in light of recent work that shows a quadratic relation between increased methane flux and atmospheric CH4 concentrations. With 50 ppm CH4, GENESIS sea surface temperatures approximate the minimum upper ocean temperatures inferred from proxy data when CO2 concentrations specified to the model are near those inferred using the phytane d13C proxy. However, atmospheric CO2 concentrations of 3500 ppm or more are still required in the model in order to reproduce inferred maximum temperatures.
    Keywords: Deep Sea Drilling Project; DSDP; Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Sibert, Elizabeth C; Norris, Richard D; Cuevas, Jose M; Graves, Lana G (2016): Pacific Ocean gyre ecosystem structure defined by 85 million year decline in sharks. Proceedings of the Royal Society B-Biological Sciences, https://doi.org/10.1098/rspb.2016.0189
    Publication Date: 2024-01-09
    Description: While the history of taxonomic diversification in open ocean lineages of ray-finned fish and elasmobranchs is increasingly known, the evolution of their roles within the open ocean ecosystem remains poorly understood. To assess the relative importance of these groups through time, we measured the accumulation rate of microfossil fish teeth and elasmobranch dermal denticles (ichthyoliths) in deep sea sediment cores from the North and South Pacific gyres over the past 85 million years. We find three distinct and stable open ocean ecosystem structures, each defined by the relative and absolute abundance of elasmobranch and ray-finned fish remains. The Cretaceous Ocean (pre-66 Ma), was characterized by abundant elasmobranch denticles, but low abundances of fish teeth. The Paleogene Ocean (66-20 Ma), initiated by the Cretaceous/Paleogene Mass Extinction, had nearly 4 times the abundance of fish teeth compared to elasmobranch denticles. This Paleogene Ocean structure remained stable during the Eocene greenhouse (50 Ma) and the Eocene-Oligocene glaciation (34 Ma), despite large changes in overall accumulation of both groups during those intervals, suggesting that climate change is not a primary driver of ecosystem structure. Dermal denticles virtually disappeared from open ocean ichthyolith assemblages about 20 Ma, while fish tooth accumulation increased dramatically in variability, marking the beginning of the Modern Ocean. Together, these results suggest that open ocean fish community structure is stable on long timescales, independent of total production and climate change. The timing of the abrupt transitions between these states suggests that the transitions may be due to interactions with other, non-preserved pelagic consumer groups.
    Keywords: Deep Sea Drilling Project; DSDP; Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Robinson, Nicole; Ravizza, Gregory E; Coccioni, Rodolfo; Peucker-Ehrenbrink, Bernhard; Norris, Richard D (2009): A high-resolution marine 187Os/188Os record for the late Maastrichtian: Distinguishing the chemical fingerprints of Deccan volcanism and the KP impact event. Earth and Planetary Science Letters, 281(3-4), 159-168, https://doi.org/10.1016/j.epsl.2009.02.019
    Publication Date: 2024-01-09
    Description: A composite late Maastrichtian (65.5 to 68.5 Ma) marine osmium (Os) isotope record, based on samples from the Southern Ocean (ODP Site 690), the Tropical Pacific Ocean (DSDP Site 577), the South Atlantic (DSDP Site 525) and the paleo-Tethys Ocean demonstrates that subaerially exposed pelagic carbonates can record seawater Os isotope variations with a fidelity comparable to sediments recovered from the seafloor. New results provide robust evidence of a 20% decline in seawater 187Os/188Os over a period of about 200 kyr early in magnetochron C29r well below the Cretaceous-Paleogene Boundary (KPB), confirming previously reported low-resolution data from the South Atlantic Ocean. New results also confirm a second more rapid decline in 187Os/188Os associated with the KPB that is accompanied by a significant increase in Os concentrations. Complementary platinum (Pt) and iridium (Ir) concentration data indicate that the length scale of diagenetic remobilization of platinum group elements from the KPB is less than 1 m and does not obscure the pre-KPB decline in 187Os/188Os. Increases in bulk sediment Ir concentrations and decreases in bulk carbonate content that coincide with the Os isotope shift suggest that carbonate burial flux may have been lower during the initial decline in 187Os/188Os. We speculate that diminished carbonate burial rate may have been the result of ocean acidification caused by Deccan volcanism.
    Keywords: Deep Sea Drilling Project; DSDP; Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 8 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hull, Pincelli M; Norris, Richard D (2011): Diverse patterns of ocean export productivity change across the Cretaceous-Paleogene boundary: New insights from biogenic barium. Paleoceanography, 26(3), PA3205, https://doi.org/10.1029/2010PA002082
    Publication Date: 2024-01-09
    Description: One of the best-studied aspects of the K-Pg mass extinction is the decline and subsequent recovery of open ocean export productivity (e.g., the flux of organic matter from the surface to deep ocean). Some export proxies, including surface-to-deep water d13C gradients and carbonate sedimentation rates, indicate a global decline in export productivity triggered by the extinction. In contrast, benthic foraminiferal and other geochemical productivity proxies suggest spatially and temporally heterogeneous K-Pg boundary effects. Here we address these conflicting export productivity patterns using new and compiled measurements of biogenic barium. Unlike a previous synthesis, we find that the boundary effect on export productivity and the timing of recovery varied considerably between different oceanic sites. The northeast and southwest Atlantic, Southern Ocean, and Indian Ocean records saw export production plummet and remain depressed for 350 thousand to 2 million years. Biogenic barium and other proxies in the central Pacific and some upwelling or neritic Atlantic sites indicate the opposite, with proxies recording either no change or increased export production in the early Paleocene. Our results suggest that widespread declines in surface-to-deep ocean d13C do not record a global decrease in export productivity. Rather, independent proxies, including barium and other geochemical proxies, and benthic community structure, indicate that some regions were characterized by maintained or rapidly recovered organic flux from the surface ocean to the deep seafloor, while other regions had profound reductions in export productivity that persisted long into the Paleocene.
    Keywords: Deep Sea Drilling Project; DSDP; Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...