ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Computer Simulation  (5)
  • American Association for the Advancement of Science (AAAS)  (5)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (5)
Years
  • 1
    Publication Date: 2002-11-26
    Description: We have analyzed the kinetics of assembly and elongation of the mammalian RNA polymerase I complex on endogenous ribosomal genes in the nuclei of living cells with the use of in vivo microscopy. We show that components of the RNA polymerase I machinery are brought to ribosomal genes as distinct subunits and that assembly occurs via metastable intermediates. With the use of computational modeling of imaging data, we have determined the in vivo elongation time of the polymerase, and measurements of recruitment and incorporation frequencies show that incorporation of components into the assembling polymerase is inefficient. Our data provide a kinetic and mechanistic framework for the function of a mammalian RNA polymerase in living cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dundr, Miroslav -- Hoffmann-Rohrer, Urs -- Hu, Qiyue -- Grummt, Ingrid -- Rothblum, Lawrence I -- Phair, Robert D -- Misteli, Tom -- New York, N.Y. -- Science. 2002 Nov 22;298(5598):1623-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12446911" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Catalytic Domain ; Cell Line ; Cell Nucleolus/metabolism ; Cell Nucleus/*metabolism ; Computer Simulation ; DNA, Ribosomal/genetics ; Fluorescence ; Fluorescence Recovery After Photobleaching ; Fluorescent Dyes ; Green Fluorescent Proteins ; Haplorhini ; Humans ; In Situ Hybridization, Fluorescence ; Kinetics ; Least-Squares Analysis ; Luminescent Proteins ; Microscopy ; Pol1 Transcription Initiation Complex Proteins/metabolism ; Probability ; Promoter Regions, Genetic ; Protein Subunits ; RNA Polymerase I/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; *Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-09-17
    Description: A small number of mammalian signaling pathways mediate a myriad of distinct physiological responses to diverse cellular stimuli. Temporal control of the signaling module that contains IkappaB kinase (IKK), its substrate inhibitor of NF-kappaB (IkappaB), and the key inflammatory transcription factor NF-kappaB can allow for selective gene activation. We have demonstrated that different inflammatory stimuli induce distinct IKK profiles, and we examined the underlying molecular mechanisms. Although tumor necrosis factor-alpha (TNFalpha)-induced IKK activity was rapidly attenuated by negative feedback, lipopolysaccharide (LPS) signaling and LPS-specific gene expression programs were dependent on a cytokine-mediated positive feedback mechanism. Thus, the distinct biological responses to LPS and TNFalpha depend on signaling pathway-specific mechanisms that regulate the temporal profile of IKK activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Werner, Shannon L -- Barken, Derren -- Hoffmann, Alexander -- GM071573/GM/NIGMS NIH HHS/ -- GM72024/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Sep 16;309(5742):1857-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Signaling Systems Laboratory, Department of Chemistry and Biochemistry, 9500 Gilman Drive, Mailcode 0375, La Jolla, CA 92093-0375, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16166517" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; Autocrine Communication ; Cell Line ; Cells, Cultured ; Computer Simulation ; Cytokines/genetics ; Feedback, Physiological ; Gene Expression Profiling ; *Gene Expression Regulation ; I-kappa B Kinase ; I-kappa B Proteins/metabolism ; Lipopolysaccharides/immunology/metabolism/pharmacology ; Mice ; Models, Biological ; NF-kappa B/deficiency/metabolism ; Oligonucleotide Array Sequence Analysis ; Protein-Serine-Threonine Kinases/*metabolism ; Receptors, Immunologic/metabolism ; Signal Transduction ; Toll-Like Receptor 4 ; Transcriptional Activation ; Tumor Necrosis Factor-alpha/deficiency/immunology/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-04-02
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2821939/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2821939/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barken, Derren -- Wang, Chiaochun Joanne -- Kearns, Jeff -- Cheong, Raymond -- Hoffmann, Alexander -- Levchenko, Andre -- GM072024-01/GM/NIGMS NIH HHS/ -- P01 GM071862/GM/NIGMS NIH HHS/ -- P01 GM071862-01A20005/GM/NIGMS NIH HHS/ -- R01 GM071573/GM/NIGMS NIH HHS/ -- R01 GM071573-01A1/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Apr 1;308(5718):52; author reply 52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Signaling Systems Laboratory, Department of Chemistry and Biochemistry and Bioinformatics Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0375, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15802586" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line, Tumor ; Cell Nucleus/metabolism ; Computer Simulation ; Cytoplasm/metabolism ; Feedback, Physiological ; *Gene Expression Regulation ; HeLa Cells ; Humans ; I-kappa B Proteins/metabolism ; Immunohistochemistry ; Models, Biological ; NF-kappa B/*metabolism ; Recombinant Fusion Proteins ; *Signal Transduction ; Transcription Factor RelA ; Transfection ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2002-11-09
    Description: Nuclear localization of the transcriptional activator NF-kappaB (nuclear factor kappaB) is controlled in mammalian cells by three isoforms of NF-kappaB inhibitor protein: IkappaBalpha, -beta, and - epsilon. Based on simplifying reductions of the IkappaB-NF-kappaB signaling module in knockout cell lines, we present a computational model that describes the temporal control of NF-kappaB activation by the coordinated degradation and synthesis of IkappaB proteins. The model demonstrates that IkappaBalpha is responsible for strong negative feedback that allows for a fast turn-off of the NF-kappaB response, whereas IkappaBbeta and - epsilon function to reduce the system's oscillatory potential and stabilize NF-kappaB responses during longer stimulations. Bimodal signal-processing characteristics with respect to stimulus duration are revealed by the model and are shown to generate specificity in gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoffmann, Alexander -- Levchenko, Andre -- Scott, Martin L -- Baltimore, David -- New York, N.Y. -- Science. 2002 Nov 8;298(5596):1241-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12424381" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Nucleus/metabolism ; Chemokine CCL5/genetics ; Chemokine CXCL10 ; Chemokines, CXC/genetics ; Computer Simulation ; Cytoplasm ; DNA-Binding Proteins/genetics/*metabolism ; Electrophoretic Mobility Shift Assay ; Feedback, Physiological ; *Gene Expression Regulation ; Humans ; I-kappa B Proteins/genetics/*metabolism ; Mice ; Mice, Knockout ; Models, Biological ; NF-kappa B/*metabolism ; Proto-Oncogene Proteins/genetics/*metabolism ; *Signal Transduction ; Transcriptional Activation ; Tumor Cells, Cultured ; Tumor Necrosis Factor-alpha/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-12-17
    Description: Stochasticity inherent to biochemical reactions (intrinsic noise) and variability in cellular states (extrinsic noise) degrade information transmitted through signaling networks. We analyzed the ability of temporal signal modulation--that is, dynamics--to reduce noise-induced information loss. In the extracellular signal-regulated kinase (ERK), calcium (Ca(2+)), and nuclear factor kappa-B (NF-kappaB) pathways, response dynamics resulted in significantly greater information transmission capacities compared to nondynamic responses. Theoretical analysis demonstrated that signaling dynamics has a key role in overcoming extrinsic noise. Experimental measurements of information transmission in the ERK network under varying signal-to-noise levels confirmed our predictions and showed that signaling dynamics mitigate, and can potentially eliminate, extrinsic noise-induced information loss. By curbing the information-degrading effects of cell-to-cell variability, dynamic responses substantially increase the accuracy of biochemical signaling networks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Selimkhanov, Jangir -- Taylor, Brooks -- Yao, Jason -- Pilko, Anna -- Albeck, John -- Hoffmann, Alexander -- Tsimring, Lev -- Wollman, Roy -- P50 GM085764/GM/NIGMS NIH HHS/ -- P50-GM085764/GM/NIGMS NIH HHS/ -- R01 GM089976/GM/NIGMS NIH HHS/ -- R01-GM071573/GM/NIGMS NIH HHS/ -- R01-GM089976/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1370-3. doi: 10.1126/science.1254933.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, USA. ; Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093, USA. ; Department of Molecular and Cellular Biology, University of California-Davis, Davis 95616, USA. ; San Diego Center for Systems Biology, La Jolla, CA 92093, USA. Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA 90025, USA. ; San Diego Center for Systems Biology, La Jolla, CA 92093, USA. BioCircuits Institute, University of California-San Diego, La Jolla, CA 92093, USA. ; Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093, USA. San Diego Center for Systems Biology, La Jolla, CA 92093, USA. Cell and Developmental Biology Section, Division of Biological Sciences, University of California-San Diego, La Jolla, CA 92093, USA. rwollman@ucsd.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504722" target="_blank"〉PubMed〈/a〉
    Keywords: *Calcium Signaling ; Cell Line ; Computer Simulation ; Extracellular Signal-Regulated MAP Kinases/*metabolism ; Humans ; *MAP Kinase Signaling System ; NF-kappa B/*metabolism ; *Signal Transduction ; Signal-To-Noise Ratio ; Single-Cell Analysis ; Systems Biology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...