ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2016-04-28
    Beschreibung: Despite the success of potent anti-retroviral drugs in controlling human immunodeficiency virus type 1 (HIV-1) infection, little progress has been made in generating an effective HIV-1 vaccine. Although passive transfer of anti-HIV-1 broadly neutralizing antibodies can protect mice or macaques against a single high-dose challenge with HIV or simian/human (SIV/HIV) chimaeric viruses (SHIVs) respectively, the long-term efficacy of a passive antibody transfer approach for HIV-1 has not been examined. Here we show, on the basis of the relatively long-term protection conferred by hepatitis A immune globulin, the efficacy of a single injection (20 mg kg(-1)) of four anti-HIV-1-neutralizing monoclonal antibodies (VRC01, VRC01-LS, 3BNC117, and 10-1074 (refs 9 - 12)) in blocking repeated weekly low-dose virus challenges of the clade B SHIVAD8. Compared with control animals, which required two to six challenges (median = 3) for infection, a single broadly neutralizing antibody infusion prevented virus acquisition for up to 23 weekly challenges. This effect depended on antibody potency and half-life. The highest levels of plasma-neutralizing activity and, correspondingly, the longest protection were found in monkeys administered the more potent antibodies 3BNC117 and 10-1074 (median = 13 and 12.5 weeks, respectively). VRC01, which showed lower plasma-neutralizing activity, protected for a shorter time (median = 8 weeks). The introduction of a mutation that extends antibody half-life into the crystallizable fragment (Fc) domain of VRC01 increased median protection from 8 to 14.5 weeks. If administered to populations at high risk of HIV-1 transmission, such an immunoprophylaxis regimen could have a major impact on virus transmission.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gautam, Rajeev -- Nishimura, Yoshiaki -- Pegu, Amarendra -- Nason, Martha C -- Klein, Florian -- Gazumyan, Anna -- Golijanin, Jovana -- Buckler-White, Alicia -- Sadjadpour, Reza -- Wang, Keyun -- Mankoff, Zachary -- Schmidt, Stephen D -- Lifson, Jeffrey D -- Mascola, John R -- Nussenzweig, Michel C -- Martin, Malcolm A -- AI-100148/AI/NIAID NIH HHS/ -- HHSN261200800001E/PHS HHS/ -- UM1 AI100663-01/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- England -- Nature. 2016 May 5;533(7601):105-9. doi: 10.1038/nature17677. Epub 2016 Apr 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA. ; Laboratory of Experimental Immunology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany. ; Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, 50937 Cologne, Germany. ; AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA. ; Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27120156" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): AIDS Vaccines/administration & dosage/immunology ; Animals ; Antibodies, Monoclonal/administration & dosage/blood/genetics/immunology ; Antibodies, Neutralizing/administration & dosage/blood/genetics/immunology ; Female ; HIV Antibodies/*administration & dosage/blood/genetics/*immunology ; HIV Infections/immunology/prevention & control/transmission ; Half-Life ; Immunoglobulin Fc Fragments/chemistry/genetics/immunology ; Macaca mulatta/immunology/virology ; Male ; Mutation/genetics ; Protein Structure, Tertiary ; SAIDS Vaccines/administration & dosage/immunology ; Simian Acquired Immunodeficiency Syndrome/blood/*immunology/*prevention & control ; Simian Immunodeficiency Virus/*immunology ; Time Factors
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Weinheim : Wiley-Blackwell
    Zeitschrift für die chemische Industrie 107 (1995), S. 2541-2558 
    ISSN: 0044-8249
    Schlagwort(e): Festkörperstrukturen ; Kristall-Engineering ; Supramolekulare Chemie ; Wasserstoffbrücken ; Chemistry ; General Chemistry
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie
    Notizen: Der Kristall einer organischen Verbindung ist die höchste Form eines Supramoleküls, und sein von chemischen und geometrischen Faktoren bestimmter Zusammenbau aus Molekülen ist das perfekte Beispiel für molekulare Erkennung im festen Zustand. Die supramolekulare Beschreibung einer Kristallstruktur beinhaltet, daß die Moleküle im Kristall durch nichtkovalente Wechselwirkungen zusammengehalten werden. Die Notwendigkeit für einen rationalen Zugang zu Festkörpern von grundlegender und praktischer Bedeutung hat zum Entstehen des Kristall-Engineering geführt, bei dem man versucht, die intermolekularen Wechselwirkungen und Erkennungsphänomene im Zusammenhang mit der Kristallpackung zu verstehen. Das Ziel des Kristall-Engineering ist es, auf der Grundlage der intermolekularen Wechselwirkungen zuverlässige Zusammenhänge zwischen der molekularen und der supramolekularen Struktur herzustellen, und idealerweise möchte man Substrukturen in einem Zielsupramolekül identifizieren, das aus logisch gewählten Vorläufermolekülen zusammengesetzt werden kann. In der Tat ist Kristall-Engineering eine neue Form der organischen Synthese, und es soll in diesem Beitrag gezeigt werden, daß Kristall-Engineering nicht nur von nomineller Bedeutung für die Organische Chemie ist, sondern im Kerngebiet der Organischen Chemie liegt und konzeptionell der traditionellen organischen Synthese überraschend ähnlich ist. Im Detail unterscheiden sich Kristall-Engineering und organischen Synthese allerdings: Beim Kristall-Engineering spielen intermolekulare Wechselwirkungen und weniger kovalente Bindungen eine Rolle. Im ersten Teil dieses Beitrags wird die Strategie behandelt: Die verwandten Konzepte des Kristall-Engineering und der organischen Synthese werden hervorgehoben und der Begriff supramolekulares Synthon eingeführt. Im zweiten Teil steht die Methode im Vordergrund, d. h. die chemischen und geometrischen Eigenschaften der spezifischen intermolekularen Wechselwirkungen.
    Zusätzliches Material: 10 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Weinheim : Wiley-Blackwell
    Angewandte Chemie International Edition in English 34 (1995), S. 2311-2327 
    ISSN: 0570-0833
    Schlagwort(e): crystal engineering ; hydrogen bonding ; molecular recognition ; organic synthesis ; supramolecular chemistry ; Crystal engineering ; Hydrogen bonds ; Molecular recognition ; Supramolecular chemistry ; Chemistry ; General Chemistry
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie
    Notizen: A crystal of an organic compound is the ultimate supermolecule, and its assembly, governed by chemical and geometrical factors, from individual molecules is the perfect example of solid-state molecular recognition. Implicit in the supramolecular description of a crystal structure is the fact that molecules in a crystal are held together by noncovalent interactions. The need for rational approaches towards solid-state structures of fundamental and practical importance has led to the emergence of crystal engineering, which seeks to understand intermolecular interactions and recognition phenomena in the context of crystal packing. The aim of crystal engineering is to establish reliable connections between molecular and supramolecular structure on the basis of intermolecular interactions. Ideally one would like to identify substructural units in a target supermolecule that can be assembled from logically chosen precursor molecules. Indeed, crystal engineering is a new organic synthesis, and the aim of this article is to show that rather than being only nominally relevant to organic chemistry, this subject is well within the mainstream, being surprisingly similar to traditional organic synthesis in concept. The details vary because one is dealing here with intermolecular interactions rather than with covalent bonds; so this article is divided into two parts. The first is concerned with strategy, highlighting the conceptual relationship between crystal engineering and organic synthesis and introduces the term supramolecular synthon. The second part emphasizes methodology, that is, the chemical and geometrical properties of specific intermolecular interactions.
    Zusätzliches Material: 10 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...