ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOPHYSICS  (5)
  • Chemical Engineering  (4)
  • 1990-1994  (8)
  • 1970-1974  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 39 (1993), S. 89-98 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The occurrence of instabilities in chemically reacting systems, resulting in unsteady and spatially inhomogeneous reaction rates, is a widespread phenomenon. In this article, we use nonlinear signal processing techniques to extract a simple, but accurate, dynamic model from experimental data of a system with spatiotemporal variations. The approach consists of a combination of two steps. The proper orthogonal decomposition [POD or Karhunen-Loève (KL) expansion] allows us to determine active degrees of freedom (important spatial structures) of the system. Projection onto these “modes” reduces the data to a small number of time series. Processing these time series through an artificial neural network (ANN) results in a low-dimensional, nonlinear dynamic model with almost quantitative predictive capabilities.This approach is demonstrated using spatiotemporal data from CO oxidation on a Pt (110) crystal surface. In this special case, the dynamics of the two-dimensional reaction profile can be successfully described by four modes; the ANN-based model not only correctly predicts the spatiotemporal short-term behavior, but also accurately captures the long-term dynamics (the attractor). While this approach does not substitute for fundamental modeling, it provides a systematic framework for processing experimental data from a wide variety of spatiotemporally varying reaction engineering processes.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 40 (1994), S. 1794-1803 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Time-dependent viscous flows driven by capillarity act to minimize the surface area of a fluid bounded in a plane geometry with initial gradients in surface curvature. These free-surface flows are solved by a finite-element model applied to describe the viscous sintering of two-dimensional ceramic particles. The numerical model is validated by comparison to the analytical solution obtained by Hopper (1990) for the coalescence of two infinite cylinders of equal cross section and is applied to several other geometries pertinent to the study of particle sintering for which analytical results are not available. Details of the flow fields and morphological evolution lend insight to the physical behavior of these systems and provide a basis for the more complete understanding of viscous sintering phenomena.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Four ethylene- 1 -butene copolymers of about the same comonomer content but obtained with different supported Ziegler-Natta catalyst systems have been studied. The effects of the catalyst and the crystallization conditions on the morphological structure have been analyzed. These two factors'clearly affect the melting endotherms and the most probable crystallite thickness of the copolymers, although no important differences were found in the crystalline contents. The catalyst system influences the melting pattern due to changes in the chemical composition distribution, i.e., variations in the comonomer content between chains of different molecular weight.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 31 (1991), S. 404-409 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: In this work we report the emulsion copolymerization of styrene and acrylic acid using a cationic (cetyltrimethylammonium bromide or CTAB) or an anionic (sodium dodecylsulfate or SDS) emulsifier. Latexes were stable and monodisperse with spherical particles of ∼100 nm for the CTAB latex and of ∼70 nm for the SDS latex. However, a random copolymer was produced with CTAB whereas a “blocky” copolymer was obtained with SDS. Here we propose a mechanism to explain these structural differences in terms of the relative reactivities of styrene and acrylic acid and of their initial location and distribution in the SDS and CTAB emulsions.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-31
    Description: In order to better understand phase transformations, chemical migration, and isotopic disequilibrium in highly shocked rocks, we have performed a microprobe and an ATEM study on gneisses shocked up to 60 GPa from the Haughton Crater. This study reveals the following chemical and structural characteristics: (1) SiO2 dominant areas are formed by a mixture of pure SiO2 polycrystalline quartz identified by electron diffraction pattern and chemical analysis and a silica-rich amorphous phase containing minor amounts of aluminium, potassium, and iron; (2) Areas with biotitelike composition are formed by less than 200-nm grains of iron-rich spinels embedded in a silica-rich amorphous phase that is very similar to the one described above; (3) Layers with feldsparlike composition are constituted by 100-200-nm-sized alumina-rich grains (the indexation of the crystalline structure is under progress) and the silica-rich amorphous phase; (4) Zones characterized by the unusual Al/Si ratio close to 1 are formed by spinel grains (200-nm-sized) embedded in the same silica-rich amorphous phase; and (5) The fracturated sillimanites contain domains with a lamellar structure, defined by the intercalation of 100-nm-wide lamellae of mullite crystals and of a silica-rich amorphous phase. These mullite crystals preserved the crystallographical orientation of the preshock sillimanite. All compositional domains, identified at the microprobe scale, can thus be explained by a mixture in different proportion between the following phases: (1) a silica-rich amorphous phase, with minor Al and K; (2) quartz crystals; (3) spinel crystals and alumina-rich crystals; (4) sillimanite; and (5) mullite. Such mixtures of amorphous phases and crystals in different proportions explain disturbed isotope systems in these rocks and chemical heterogeneities observed on the microprobe.
    Keywords: GEOPHYSICS
    Type: Lunar and Planetary Inst., International Conference on Large Meteorite Impacts and Planetary Evolution; p 49-50
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: This report documents progress to date in an ongoing study to analyze and model emissions leaving a proposed High Speed Civil Transport (HSCT) from when the exhaust gases leave the engine until they are deposited at atmospheric scales in the stratosphere. Estimates are given for the emissions, summarizing relevant earlier work (CIAP) and reviewing current propulsion research efforts. The chemical evolution and the mixing and vortical motion of the exhaust are analyzed to track the exhaust and its speciation as the emissions are mixed to atmospheric scales. The species tracked include those that could be heterogeneously reactive on the surfaces of the condensed solid water (ice) particles and on exhaust soot particle surfaces. Dispersion and reaction of chemical constituents in the far wake are studied with a Lagrangian air parcel model, in conjunction with a radiation code to calculate the net heating/cooling. Laboratory measurements of heterogeneous chemistry of aqueous sulfuric acid and nitric acid hydrates are also described. Results include the solubility of HCl in sulfuric acid which is a key parameter for modeling stratospheric processing. We also report initial results for condensation of nitric acid trihydrate from gas phase H2O and HNO3.
    Keywords: GEOPHYSICS
    Type: NASA-CR-189688 , NAS 1.26:189688 , ARI-RR-902
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: Progress to date in an ongoing study to analyze and model emissions leaving a proposed High Speed Civil Transport (HSCT) from when the exhaust gases leave the engine until they are deposited at atmospheric scales in the stratosphere is documented. A kinetic condensation model was implemented to predict heterogeneous condensation in the plume regime behind an HSCT flying in the lower stratosphere. Simulations were performed to illustrate the parametric dependence of contrail droplet growth on the exhaust condensation nuclei number density and size distribution. Model results indicate that the condensation of water vapor is strongly dependent on the number density of activated CN. Incorporation of estimates for dilution factors into a Lagrangian box model of the far-wake regime with scale-dependent diffusion indicates negligible decrease in ozone and enhancement of water concentrations of 6-13 times background, which decrease rapidly over 1-3 days. Radiative calculations indicate a net differential cooling rate of the plume about 3K/day at the beginning of the wake regime, with a total subsidence ranging between 0.4 and 1 km. Results from the Lagrangian plume model were used to estimate the effect of repeated superposition of aircraft plumes on the concentrations of water and NO(y) along a flight corridor. Results of laboratory studies of heterogeneous chemistry are also described. Kinetics of HCl, N2O5 and ClONO2 uptake on liquid sulfuric acid were measured as a function of composition and temperature. Refined measurements of the thermodynamics of nitric acid hydrates indicate that metastable dihydrate may play a role in the nucleation of more stable trihydrates PSC's.
    Keywords: GEOPHYSICS
    Type: NASA-CR-191495 , NAS 1.26:191495 , ARI-RR-1006
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-27
    Description: There are no author-identified significant results in this report.
    Keywords: GEOPHYSICS
    Type: E74-10212 , NASA-CR-136394
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: The Utah State University space system design project for 1989 to 1990 focuses on the design of a global electrical field sensing system to be deployed in a constellation of microspacecraft. The design includes the selection of the sensor and the design of the spacecraft, the sensor support subsystems, the launch vehicle interface structure, on board data storage and communications subsystems, and associated ground receiving stations. Optimization of satellite orbits and spacecraft attitude are critical to the overall mapping of the electrical field and, thus, are also included in the project. The spacecraft design incorporates a deployable sensor array (5 m booms) into a spinning oblate platform. Data is taken every 0.1 seconds by the electrical field sensors and stored on-board. An omni-directional antenna communicates with a ground station twice per day to down link the stored data. Wrap-around solar cells cover the exterior of the spacecraft to generate power. Nine Pegasus launches may be used to deploy fifty such satellites to orbits with inclinations greater than 45 deg. Piggyback deployment from other launch vehicles such as the DELTA 2 is also examined.
    Keywords: GEOPHYSICS
    Type: NASA-CR-186821 , NAS 1.26:186821
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...