ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-05-21
    Description: The generation of high-affinity antibodies depends on the ability of B cells to extract antigens from the surfaces of antigen-presenting cells. B cells that express high-affinity B cell receptors (BCRs) acquire more antigen and obtain better T cell help. However, the mechanisms by which B cells extract antigen remain unclear. Using fluid and flexible membrane substrates to mimic antigen-presenting cells, we showed that B cells acquire antigen by dynamic myosin IIa-mediated contractions that pull out and invaginate the presenting membranes. The forces generated by myosin IIa contractions ruptured most individual BCR-antigen bonds and promoted internalization of only high-affinity, multivalent BCR microclusters. Thus, B cell contractility contributes to affinity discrimination by mechanically testing the strength of antigen binding.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3713314/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3713314/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Natkanski, Elizabeth -- Lee, Wing-Yiu -- Mistry, Bhakti -- Casal, Antonio -- Molloy, Justin E -- Tolar, Pavel -- MC_U117570592/Medical Research Council/United Kingdom -- MC_U117597138/Medical Research Council/United Kingdom -- U117570592/Medical Research Council/United Kingdom -- U117597138/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2013 Jun 28;340(6140):1587-90. doi: 10.1126/science.1237572. Epub 2013 May 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Immune Cell Biology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23686338" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antibody Affinity ; *Antigen Presentation ; Antigens/*immunology ; B-Lymphocytes/*immunology ; Cells, Cultured ; Mechanical Processes ; Mice ; Mice, Inbred C57BL ; Microscopy, Atomic Force ; Nonmuscle Myosin Type IIA/*physiology ; Receptors, Antigen, B-Cell/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-01-13
    Description: Wnt signaling has recently emerged as a key factor in controlling stem cell expansion. In contrast, we show here that Wnt/beta-catenin signal activation in emigrating neural crest stem cells (NCSCs) has little effect on the population size and instead regulates fate decisions. Sustained beta-catenin activity in neural crest cells promotes the formation of sensory neural cells in vivo at the expense of virtually all other neural crest derivatives. Moreover, Wnt1 is able to instruct early NCSCs (eNCSCs) to adopt a sensory neuronal fate in a beta-catenin-dependent manner. Thus, the role of Wnt/beta-catenin in stem cells is cell-type dependent.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Hye-Youn -- Kleber, Maurice -- Hari, Lisette -- Brault, Veronique -- Suter, Ueli -- Taketo, Makoto M -- Kemler, Rolf -- Sommer, Lukas -- New York, N.Y. -- Science. 2004 Feb 13;303(5660):1020-3. Epub 2004 Jan 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Cell Biology, Department of Biology, Swiss Federal Institute of Technology, ETH-Honggerberg, CH-8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14716020" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basic Helix-Loop-Helix Transcription Factors ; Cadherins/metabolism ; Cell Differentiation ; Cell Division ; Cell Lineage ; Cell Movement ; Cells, Cultured ; Central Nervous System/embryology ; Cytoskeletal Proteins/*metabolism ; DNA-Binding Proteins/metabolism ; Mice ; Models, Neurological ; Multipotent Stem Cells/*physiology ; Mutation ; Nerve Tissue Proteins/metabolism ; Neural Crest/*cytology/embryology/physiology ; Neurons, Afferent/*cytology/physiology ; Proto-Oncogene Proteins/*metabolism ; *Signal Transduction ; Trans-Activators/*metabolism ; Transcription Factor Brn-3 ; Transcription Factors/metabolism ; Wnt Proteins ; Wnt1 Protein ; *Zebrafish Proteins ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-11-06
    Description: Models of unregulated nitric oxide (NO) diffusion do not consistently account for the biochemistry of NO synthase (NOS)-dependent signalling in many cell systems. For example, endothelial NOS controls blood pressure, blood flow and oxygen delivery through its effect on vascular smooth muscle tone, but the regulation of these processes is not adequately explained by simple NO diffusion from endothelium to smooth muscle. Here we report a new model for the regulation of NO signalling by demonstrating that haemoglobin (Hb) alpha (encoded by the HBA1 and HBA2 genes in humans) is expressed in human and mouse arterial endothelial cells and enriched at the myoendothelial junction, where it regulates the effects of NO on vascular reactivity. Notably, this function is unique to Hb alpha and is abrogated by its genetic depletion. Mechanistically, endothelial Hb alpha haem iron in the Fe(3+) state permits NO signalling, and this signalling is shut off when Hb alpha is reduced to the Fe(2+) state by endothelial cytochrome b5 reductase 3 (CYB5R3, also known as diaphorase 1). Genetic and pharmacological inhibition of CYB5R3 increases NO bioactivity in small arteries. These data reveal a new mechanism by which the regulation of the intracellular Hb alpha oxidation state controls NOS signalling in non-erythroid cells. This model may be relevant to haem-containing globins in a broad range of NOS-containing somatic cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531883/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531883/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Straub, Adam C -- Lohman, Alexander W -- Billaud, Marie -- Johnstone, Scott R -- Dwyer, Scott T -- Lee, Monica Y -- Bortz, Pamela Schoppee -- Best, Angela K -- Columbus, Linda -- Gaston, Benjamin -- Isakson, Brant E -- HL007284/HL/NHLBI NIH HHS/ -- HL059337/HL/NHLBI NIH HHS/ -- HL088554/HL/NHLBI NIH HHS/ -- HL101871/HL/NHLBI NIH HHS/ -- HL107963/HL/NHLBI NIH HHS/ -- HL112904/HL/NHLBI NIH HHS/ -- R00 HL112904/HL/NHLBI NIH HHS/ -- R01 HL088554/HL/NHLBI NIH HHS/ -- R21 HL107963/HL/NHLBI NIH HHS/ -- England -- Nature. 2012 Nov 15;491(7424):473-7. doi: 10.1038/nature11626. Epub 2012 Oct 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23123858" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic alpha-1 Receptor Agonists/pharmacology ; Animals ; Cells, Cultured ; Diffusion ; Endothelial Cells/drug effects/enzymology/*metabolism ; Gene Expression Profiling ; *Gene Expression Regulation/drug effects ; Hemoglobins/genetics/*metabolism ; Humans ; Iron/chemistry ; Mice ; Nitric Oxide/*metabolism ; Nitric Oxide Synthase/metabolism ; Oxidation-Reduction ; Peptide Fragments/genetics/*metabolism ; Phenylephrine/pharmacology ; *Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-05-15
    Description: Many acute and chronic anaemias, including haemolysis, sepsis and genetic bone marrow failure diseases such as Diamond-Blackfan anaemia, are not treatable with erythropoietin (Epo), because the colony-forming unit erythroid progenitors (CFU-Es) that respond to Epo are either too few in number or are not sensitive enough to Epo to maintain sufficient red blood cell production. Treatment of these anaemias requires a drug that acts at an earlier stage of red cell formation and enhances the formation of Epo-sensitive CFU-E progenitors. Recently, we showed that glucocorticoids specifically stimulate self-renewal of an early erythroid progenitor, burst-forming unit erythroid (BFU-E), and increase the production of terminally differentiated erythroid cells. Here we show that activation of the peroxisome proliferator-activated receptor alpha (PPAR-alpha) by the PPAR-alpha agonists GW7647 and fenofibrate synergizes with the glucocorticoid receptor (GR) to promote BFU-E self-renewal. Over time these agonists greatly increase production of mature red blood cells in cultures of both mouse fetal liver BFU-Es and mobilized human adult CD34(+) peripheral blood progenitors, with a new and effective culture system being used for the human cells that generates normal enucleated reticulocytes. Although Ppara(-/-) mice show no haematological difference from wild-type mice in both normal and phenylhydrazine (PHZ)-induced stress erythropoiesis, PPAR-alpha agonists facilitate recovery of wild-type but not Ppara(-/-) mice from PHZ-induced acute haemolytic anaemia. We also show that PPAR-alpha alleviates anaemia in a mouse model of chronic anaemia. Finally, both in control and corticosteroid-treated BFU-E cells, PPAR-alpha co-occupies many chromatin sites with GR; when activated by PPAR-alpha agonists, additional PPAR-alpha is recruited to GR-adjacent sites and presumably facilitates GR-dependent BFU-E self-renewal. Our discovery of the role of PPAR-alpha agonists in stimulating self-renewal of early erythroid progenitor cells suggests that the clinically tested PPAR-alpha agonists we used may improve the efficacy of corticosteroids in treating Epo-resistant anaemias.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498266/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498266/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Hsiang-Ying -- Gao, Xiaofei -- Barrasa, M Inmaculada -- Li, Hu -- Elmes, Russell R -- Peters, Luanne L -- Lodish, Harvey F -- 2 P01 HL032262-25/HL/NHLBI NIH HHS/ -- DK100692/DK/NIDDK NIH HHS/ -- P01 HL032262/HL/NHLBI NIH HHS/ -- R01 DK100692/DK/NIDDK NIH HHS/ -- England -- Nature. 2015 Jun 25;522(7557):474-7. doi: 10.1038/nature14326. Epub 2015 May 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA. ; Center for Individualized Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905, USA. ; The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA. ; 1] Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA [2] Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25970251" target="_blank"〉PubMed〈/a〉
    Keywords: Acute Disease ; Anemia/drug therapy/metabolism/pathology ; Anemia, Hemolytic/metabolism ; Animals ; Butyrates/pharmacology/therapeutic use ; Cell Culture Techniques ; Cells, Cultured ; Chromatin/genetics/metabolism ; Chronic Disease ; Disease Models, Animal ; Erythroid Precursor Cells/*cytology/drug effects/metabolism ; *Erythropoiesis/drug effects ; Erythropoietin/pharmacology ; Female ; Fenofibrate/pharmacology ; Glucocorticoids/pharmacology ; Humans ; Liver/cytology/drug effects/embryology ; Mice ; PPAR alpha/agonists/deficiency/*metabolism ; Phenylhydrazines/pharmacology ; Phenylurea Compounds/pharmacology/therapeutic use ; Receptors, Glucocorticoid/*metabolism ; Signal Transduction/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-03-11
    Description: DNA replication and repair in mammalian cells involves three distinct DNA ligases: ligase I (Lig1), ligase III (Lig3) and ligase IV (Lig4). Lig3 is considered a key ligase during base excision repair because its stability depends upon its nuclear binding partner Xrcc1, a critical factor for this DNA repair pathway. Lig3 is also present in the mitochondria, where its role in mitochondrial DNA (mtDNA) maintenance is independent of Xrcc1 (ref. 4). However, the biological role of Lig3 is unclear as inactivation of murine Lig3 results in early embryonic lethality. Here we report that Lig3 is essential for mtDNA integrity but dispensable for nuclear DNA repair. Inactivation of Lig3 in the mouse nervous system resulted in mtDNA loss leading to profound mitochondrial dysfunction, disruption of cellular homeostasis and incapacitating ataxia. Similarly, inactivation of Lig3 in cardiac muscle resulted in mitochondrial dysfunction and defective heart-pump function leading to heart failure. However, Lig3 inactivation did not result in nuclear DNA repair deficiency, indicating essential DNA repair functions of Xrcc1 can occur in the absence of Lig3. Instead, we found that Lig1 was critical for DNA repair, but acted in a cooperative manner with Lig3. Additionally, Lig3 deficiency did not recapitulate the hallmark features of neural Xrcc1 inactivation such as DNA damage-induced cerebellar interneuron loss, further underscoring functional separation of these DNA repair factors. Therefore, our data reveal that the critical biological role of Lig3 is to maintain mtDNA integrity and not Xrcc1-dependent DNA repair.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3079429/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3079429/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gao, Yankun -- Katyal, Sachin -- Lee, Youngsoo -- Zhao, Jingfeng -- Rehg, Jerold E -- Russell, Helen R -- McKinnon, Peter J -- CA-21765/CA/NCI NIH HHS/ -- NS-37956/NS/NINDS NIH HHS/ -- P01 CA096832/CA/NCI NIH HHS/ -- P01 CA096832-07/CA/NCI NIH HHS/ -- P30 CA21765/CA/NCI NIH HHS/ -- R01 NS037956/NS/NINDS NIH HHS/ -- R01 NS037956-13/NS/NINDS NIH HHS/ -- England -- Nature. 2011 Mar 10;471(7337):240-4. doi: 10.1038/nature09773.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21390131" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ataxia/pathology/physiopathology ; Biocatalysis ; Cell Nucleus/*genetics ; Cell Survival ; Cells, Cultured ; DNA Damage ; DNA Ligases/deficiency/genetics/*metabolism ; *DNA Repair ; DNA, Mitochondrial/*metabolism ; DNA-Binding Proteins/deficiency/genetics/*metabolism ; Genes, Essential ; Heart/physiology/physiopathology ; Interneurons/enzymology/pathology ; Mice ; Mitochondria/enzymology/genetics/pathology ; Muscle, Skeletal/enzymology/pathology ; Myocardium/enzymology/pathology ; Nervous System/enzymology/pathology ; Phenotype
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-05-30
    Description: Insulin constitutes a principal evolutionarily conserved hormonal axis for maintaining glucose homeostasis; dysregulation of this axis causes diabetes. PGC-1alpha (peroxisome-proliferator-activated receptor-gamma coactivator-1alpha) links insulin signalling to the expression of glucose and lipid metabolic genes. The histone acetyltransferase GCN5 (general control non-repressed protein 5) acetylates PGC-1alpha and suppresses its transcriptional activity, whereas sirtuin 1 deacetylates and activates PGC-1alpha. Although insulin is a mitogenic signal in proliferative cells, whether components of the cell cycle machinery contribute to its metabolic action is poorly understood. Here we report that in mice insulin activates cyclin D1-cyclin-dependent kinase 4 (Cdk4), which, in turn, increases GCN5 acetyltransferase activity and suppresses hepatic glucose production independently of cell cycle progression. Through a cell-based high-throughput chemical screen, we identify a Cdk4 inhibitor that potently decreases PGC-1alpha acetylation. Insulin/GSK-3beta (glycogen synthase kinase 3-beta) signalling induces cyclin D1 protein stability by sequestering cyclin D1 in the nucleus. In parallel, dietary amino acids increase hepatic cyclin D1 messenger RNA transcripts. Activated cyclin D1-Cdk4 kinase phosphorylates and activates GCN5, which then acetylates and inhibits PGC-1alpha activity on gluconeogenic genes. Loss of hepatic cyclin D1 results in increased gluconeogenesis and hyperglycaemia. In diabetic models, cyclin D1-Cdk4 is chronically elevated and refractory to fasting/feeding transitions; nevertheless further activation of this kinase normalizes glycaemia. Our findings show that insulin uses components of the cell cycle machinery in post-mitotic cells to control glucose homeostasis independently of cell division.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076706/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076706/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Yoonjin -- Dominy, John E -- Choi, Yoon Jong -- Jurczak, Michael -- Tolliday, Nicola -- Camporez, Joao Paulo -- Chim, Helen -- Lim, Ji-Hong -- Ruan, Hai-Bin -- Yang, Xiaoyong -- Vazquez, Francisca -- Sicinski, Piotr -- Shulman, Gerald I -- Puigserver, Pere -- DK059635/DK/NIDDK NIH HHS/ -- F32 DK083871/DK/NIDDK NIH HHS/ -- P30 DK034989/DK/NIDDK NIH HHS/ -- R01 CA083688/CA/NCI NIH HHS/ -- R01 CA108420/CA/NCI NIH HHS/ -- R01 DK069966/DK/NIDDK NIH HHS/ -- R01 DK089098/DK/NIDDK NIH HHS/ -- R01069966/PHS HHS/ -- R03 DA032468/DA/NIDA NIH HHS/ -- R03 MH092174/MH/NIMH NIH HHS/ -- R24 DK080261/DK/NIDDK NIH HHS/ -- R24DK080261-06/DK/NIDDK NIH HHS/ -- U24 DK059635/DK/NIDDK NIH HHS/ -- England -- Nature. 2014 Jun 26;510(7506):547-51. doi: 10.1038/nature13267. Epub 2014 May 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA [2] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; 1] Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA [2] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Yale's Mouse Metabolic Phenotyping Center and Departments of Internal Medicine and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA. ; Chemical Biology Platform, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02141, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24870244" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acids/pharmacology ; Animals ; *Cell Cycle ; Cell Line, Tumor ; Cell Nucleus/metabolism ; Cells, Cultured ; Cyclin D1/deficiency/genetics/*metabolism ; Cyclin-Dependent Kinase 4/antagonists & inhibitors/*metabolism ; Diabetes Mellitus/metabolism ; Enzyme Activation ; Fasting ; Gene Deletion ; Gluconeogenesis/genetics ; Glucose/*metabolism ; Glycogen Synthase Kinase 3/metabolism ; Hepatocytes/cytology/drug effects/metabolism ; Histone Acetyltransferases/metabolism ; Homeostasis ; Humans ; Hyperglycemia/metabolism ; Hyperinsulinism/metabolism ; Insulin/*metabolism ; Male ; Mice ; Phosphorylation ; RNA, Messenger/analysis/genetics ; *Signal Transduction ; Transcription Factors/metabolism ; Transcription, Genetic/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-03-08
    Description: Despite their importance, the molecular circuits that control the differentiation of naive T cells remain largely unknown. Recent studies that reconstructed regulatory networks in mammalian cells have focused on short-term responses and relied on perturbation-based approaches that cannot be readily applied to primary T cells. Here we combine transcriptional profiling at high temporal resolution, novel computational algorithms, and innovative nanowire-based perturbation tools to systematically derive and experimentally validate a model of the dynamic regulatory network that controls the differentiation of mouse TH17 cells, a proinflammatory T-cell subset that has been implicated in the pathogenesis of multiple autoimmune diseases. The TH17 transcriptional network consists of two self-reinforcing, but mutually antagonistic, modules, with 12 novel regulators, the coupled action of which may be essential for maintaining the balance between TH17 and other CD4(+) T-cell subsets. Our study identifies and validates 39 regulatory factors, embeds them within a comprehensive temporal network and reveals its organizational principles; it also highlights novel drug targets for controlling TH17 cell differentiation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637864/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637864/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yosef, Nir -- Shalek, Alex K -- Gaublomme, Jellert T -- Jin, Hulin -- Lee, Youjin -- Awasthi, Amit -- Wu, Chuan -- Karwacz, Katarzyna -- Xiao, Sheng -- Jorgolli, Marsela -- Gennert, David -- Satija, Rahul -- Shakya, Arvind -- Lu, Diana Y -- Trombetta, John J -- Pillai, Meenu R -- Ratcliffe, Peter J -- Coleman, Mathew L -- Bix, Mark -- Tantin, Dean -- Park, Hongkun -- Kuchroo, Vijay K -- Regev, Aviv -- 1P50HG006193-01/HG/NHGRI NIH HHS/ -- 5DP1OD003893-03/OD/NIH HHS/ -- AI073748/AI/NIAID NIH HHS/ -- AI45757/AI/NIAID NIH HHS/ -- DP1 OD003893/OD/NIH HHS/ -- DP1 OD003958/OD/NIH HHS/ -- DP1OD003958-01/OD/NIH HHS/ -- F32 HD075541/HD/NICHD NIH HHS/ -- K01 DK090105/DK/NIDDK NIH HHS/ -- NS 30843/NS/NINDS NIH HHS/ -- NS045937/NS/NINDS NIH HHS/ -- P01 AI045757/AI/NIAID NIH HHS/ -- P01 AI073748/AI/NIAID NIH HHS/ -- P50 HG006193/HG/NHGRI NIH HHS/ -- R01 AI100873/AI/NIAID NIH HHS/ -- R01 NS030843/NS/NINDS NIH HHS/ -- R01 NS045937/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Apr 25;496(7446):461-8. doi: 10.1038/nature11981. Epub 2013 Mar 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23467089" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD95/metabolism ; Cell Differentiation/*genetics ; Cells, Cultured ; DNA/genetics/metabolism ; Forkhead Transcription Factors/metabolism ; Gene Knockdown Techniques ; Gene Regulatory Networks/*genetics ; Genome/genetics ; Interferon-gamma/biosynthesis ; Interleukin-2/genetics ; Mice ; Mice, Inbred C57BL ; Nanowires ; Neoplasm Proteins/metabolism ; Nuclear Proteins/metabolism ; RNA, Messenger/genetics/metabolism ; Reproducibility of Results ; Silicon ; Th17 Cells/*cytology/immunology/*metabolism ; Time Factors ; Trans-Activators/metabolism ; Transcription Factors/metabolism ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-05-23
    Description: Metformin is considered to be one of the most effective therapeutics for treating type 2 diabetes because it specifically reduces hepatic gluconeogenesis without increasing insulin secretion, inducing weight gain or posing a risk of hypoglycaemia. For over half a century, this agent has been prescribed to patients with type 2 diabetes worldwide, yet the underlying mechanism by which metformin inhibits hepatic gluconeogenesis remains unknown. Here we show that metformin non-competitively inhibits the redox shuttle enzyme mitochondrial glycerophosphate dehydrogenase, resulting in an altered hepatocellular redox state, reduced conversion of lactate and glycerol to glucose, and decreased hepatic gluconeogenesis. Acute and chronic low-dose metformin treatment effectively reduced endogenous glucose production, while increasing cytosolic redox and decreasing mitochondrial redox states. Antisense oligonucleotide knockdown of hepatic mitochondrial glycerophosphate dehydrogenase in rats resulted in a phenotype akin to chronic metformin treatment, and abrogated metformin-mediated increases in cytosolic redox state, decreases in plasma glucose concentrations, and inhibition of endogenous glucose production. These findings were replicated in whole-body mitochondrial glycerophosphate dehydrogenase knockout mice. These results have significant implications for understanding the mechanism of metformin's blood glucose lowering effects and provide a new therapeutic target for type 2 diabetes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4074244/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4074244/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Madiraju, Anila K -- Erion, Derek M -- Rahimi, Yasmeen -- Zhang, Xian-Man -- Braddock, Demetrios T -- Albright, Ronald A -- Prigaro, Brett J -- Wood, John L -- Bhanot, Sanjay -- MacDonald, Michael J -- Jurczak, Michael J -- Camporez, Joao-Paulo -- Lee, Hui-Young -- Cline, Gary W -- Samuel, Varman T -- Kibbey, Richard G -- Shulman, Gerald I -- K01 DK-099402/DK/NIDDK NIH HHS/ -- P30 DK-034989/DK/NIDDK NIH HHS/ -- P30 DK-45735/DK/NIDDK NIH HHS/ -- P30 DK034989/DK/NIDDK NIH HHS/ -- P30 DK045735/DK/NIDDK NIH HHS/ -- R01 DK-092606/DK/NIDDK NIH HHS/ -- R01 DK-28348/DK/NIDDK NIH HHS/ -- R01 DK-40936/DK/NIDDK NIH HHS/ -- R01 DK028348/DK/NIDDK NIH HHS/ -- R01 DK040936/DK/NIDDK NIH HHS/ -- R01 DK092606/DK/NIDDK NIH HHS/ -- R24 DK-085638/DK/NIDDK NIH HHS/ -- R24 DK085638/DK/NIDDK NIH HHS/ -- U24 DK-059635/DK/NIDDK NIH HHS/ -- U24 DK059635/DK/NIDDK NIH HHS/ -- UL1 TR000142/TR/NCATS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jun 26;510(7506):542-6. doi: 10.1038/nature13270. Epub 2014 May 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA [2] Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA [3] Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520, USA. ; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA. ; Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA. ; Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA. ; Cancer Prevention Research Institute of Texas Scholar, Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, USA. ; Isis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, USA. ; University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA, 53706. ; 1] Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA [2] Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA. ; 1] Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA [2] Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA [3] Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520, USA [4] Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark, DK-2200.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24847880" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Glucose/analysis/biosynthesis ; Cells, Cultured ; Diabetes Mellitus, Type 2/drug therapy/enzymology/metabolism ; Gluconeogenesis/*drug effects ; Glycerolphosphate Dehydrogenase/*antagonists & ; inhibitors/deficiency/genetics/metabolism ; Humans ; Hypoglycemic Agents/pharmacology ; Insulin/secretion ; Lactic Acid/metabolism ; Liver/drug effects/metabolism ; Male ; Metformin/*pharmacology ; Mice, Knockout ; Mitochondria/*enzymology ; Oxidation-Reduction/drug effects ; Rats ; Rats, Sprague-Dawley
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1995-12-15
    Description: The relative locations of several chromosomes within wheel-shaped prometaphase chromosome rosettes of human fibroblasts and HeLa cells were determined with fluorescence hybridization. Homologs were consistently positioned on opposite sides of the rosette, which suggests that chromosomes are separated into two haploid sets, each derived from one parent. The relative locations of chromosomes on the rosette were mapped by dual hybridizations. The data suggest that the chromosome orders within the two haploid sets are antiparallel. This chromosome arrangement in human cells appears to be both independent of cell type- and species-specific and may influence chromosome topology throughout the cell cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nagele, R -- Freeman, T -- McMorrow, L -- Lee, H Y -- New York, N.Y. -- Science. 1995 Dec 15;270(5243):1831-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Medicine and Dentistry of New Jersey, School of Osteopathic Medicine, Stratford 08084, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8525379" target="_blank"〉PubMed〈/a〉
    Keywords: Cells, Cultured ; Chromosomes/*physiology/ultrastructure ; DNA Probes ; Fibroblasts/ultrastructure ; HeLa Cells ; Humans ; In Situ Hybridization, Fluorescence ; Metaphase/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...