ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-02-26
    Description: The hinge region on the Fc fragment of human immunoglobulin G interacts with at least four different natural protein scaffolds that bind at a common site between the C(H2) and C(H3) domains. This "consensus" site was also dominant for binding of random peptides selected in vitro for high affinity (dissociation constant, about 25 nanomolar) by bacteriophage display. Thus, this site appears to be preferred owing to its intrinsic physiochemical properties, and not for biological function alone. A 2.7 angstrom crystal structure of a selected 13-amino acid peptide in complex with Fc demonstrated that the peptide adopts a compact structure radically different from that of the other Fc binding proteins. Nevertheless, the specific Fc binding interactions of the peptide strongly mimic those of the other proteins. Juxtaposition of the available Fc-complex crystal structures showed that the convergent binding surface is highly accessible, adaptive, and hydrophobic and contains relatively few sites for polar interactions. These are all properties that may promote cross-reactive binding, which is common to protein-protein interactions and especially hormone-receptor complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DeLano, W L -- Ultsch, M H -- de Vos, A M -- Wells, J A -- New York, N.Y. -- Science. 2000 Feb 18;287(5456):1279-83.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Group in Biophysics, University of California, San Francisco, CA 94143, USA and Sunesis Pharmaceuticals, 3696 Haven Avenue, Suite C, Redwood City, CA 94063, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10678837" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Binding Sites, Antibody ; Crystallography, X-Ray ; Dimerization ; Evolution, Molecular ; Humans ; Hydrogen Bonding ; Immunoglobulin Fc Fragments/chemistry/*metabolism ; Immunoglobulin G/chemistry/*metabolism ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Peptide Library ; Peptides/chemistry/*metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Fc/chemistry/metabolism ; Rheumatoid Factor/chemistry/metabolism ; Staphylococcal Protein A/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-01-08
    Description: Archaea, one of three major evolutionary lineages of life, encode proteasomes highly related to those of eukaryotes. In contrast, archaeal ubiquitin-like proteins are less conserved and not known to function in protein conjugation. This has complicated our understanding of the origins of ubiquitination and its connection to proteasomes. Here we report two small archaeal modifier proteins, SAMP1 and SAMP2, with a beta-grasp fold and carboxy-terminal diglycine motif similar to ubiquitin, that form protein conjugates in the archaeon Haloferax volcanii. The levels of SAMP-conjugates were altered by nitrogen-limitation and proteasomal gene knockout and spanned various functions including components of the Urm1 pathway. LC-MS/MS-based collision-induced dissociation demonstrated isopeptide bonds between the C-terminal glycine of SAMP2 and the epsilon-amino group of lysines from a number of protein targets and Lys 58 of SAMP2 itself, revealing poly-SAMP chains. The widespread distribution and diversity of pathways modified by SAMPylation suggest that this type of protein conjugation is central to the archaeal lineage.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2872088/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2872088/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Humbard, Matthew A -- Miranda, Hugo V -- Lim, Jae-Min -- Krause, David J -- Pritz, Jonathan R -- Zhou, Guangyin -- Chen, Sixue -- Wells, Lance -- Maupin-Furlow, Julie A -- 1S10 RR025418-01/RR/NCRR NIH HHS/ -- P41 RR018502/RR/NCRR NIH HHS/ -- P41 RR018502-07/RR/NCRR NIH HHS/ -- R01 GM057498/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Jan 7;463(7277):54-60. doi: 10.1038/nature08659.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20054389" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Archaeal Proteins/chemistry/*metabolism ; Gene Deletion ; Glycylglycine/metabolism ; Haloferax volcanii/genetics/metabolism ; Immunoprecipitation ; Mass Spectrometry ; Molecular Sequence Data ; Nitrogen/metabolism ; Proteasome Endopeptidase Complex/genetics/metabolism ; Sequence Alignment ; Sulfur/metabolism ; Ubiquitination ; Ubiquitins/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-02-18
    Description: The BCR-ABL1 fusion gene is a driver oncogene in chronic myeloid leukaemia and 30-50% of cases of adult acute lymphoblastic leukaemia. Introduction of ABL1 kinase inhibitors (for example, imatinib) has markedly improved patient survival, but acquired drug resistance remains a challenge. Point mutations in the ABL1 kinase domain weaken inhibitor binding and represent the most common clinical resistance mechanism. The BCR-ABL1 kinase domain gatekeeper mutation Thr315Ile (T315I) confers resistance to all approved ABL1 inhibitors except ponatinib, which has toxicity limitations. Here we combine comprehensive drug sensitivity and resistance profiling of patient cells ex vivo with structural analysis to establish the VEGFR tyrosine kinase inhibitor axitinib as a selective and effective inhibitor for T315I-mutant BCR-ABL1-driven leukaemia. Axitinib potently inhibited BCR-ABL1(T315I), at both biochemical and cellular levels, by binding to the active form of ABL1(T315I) in a mutation-selective binding mode. These findings suggest that the T315I mutation shifts the conformational equilibrium of the kinase in favour of an active (DFG-in) A-loop conformation, which has more optimal binding interactions with axitinib. Treatment of a T315I chronic myeloid leukaemia patient with axitinib resulted in a rapid reduction of T315I-positive cells from bone marrow. Taken together, our findings demonstrate an unexpected opportunity to repurpose axitinib, an anti-angiogenic drug approved for renal cancer, as an inhibitor for ABL1 gatekeeper mutant drug-resistant leukaemia patients. This study shows that wild-type proteins do not always sample the conformations available to disease-relevant mutant proteins and that comprehensive drug testing of patient-derived cells can identify unpredictable, clinically significant drug-repositioning opportunities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pemovska, Tea -- Johnson, Eric -- Kontro, Mika -- Repasky, Gretchen A -- Chen, Jeffrey -- Wells, Peter -- Cronin, Ciaran N -- McTigue, Michele -- Kallioniemi, Olli -- Porkka, Kimmo -- Murray, Brion W -- Wennerberg, Krister -- England -- Nature. 2015 Mar 5;519(7541):102-5. doi: 10.1038/nature14119. Epub 2015 Feb 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00290 Helsinki, Finland. ; La Jolla Laboratories, Pfizer Worldwide Research &Development, San Diego, California 92121, USA. ; Hematology Research Unit Helsinki, University of Helsinki, and Helsinki University Hospital Comprehensive Cancer Center, Department of Hematology, 00290 Helsinki, Finland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25686603" target="_blank"〉PubMed〈/a〉
    Keywords: Angiogenesis Inhibitors/chemistry/pharmacology/therapeutic use ; Cell Line ; Cell Proliferation/drug effects ; Crystallization ; Crystallography, X-Ray ; Drug Repositioning ; Drug Resistance, Neoplasm/genetics ; Drug Screening Assays, Antitumor ; Fusion Proteins, bcr-abl/*antagonists & inhibitors/*chemistry/genetics/metabolism ; Humans ; Imidazoles/*chemistry/*pharmacology/therapeutic use ; Indazoles/*chemistry/*pharmacology/therapeutic use ; Kidney Neoplasms/drug therapy ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy/genetics/metabolism ; Models, Molecular ; Molecular Conformation ; Phosphorylation/drug effects ; Protein Binding ; Protein Kinase Inhibitors/chemistry/pharmacology/therapeutic use ; Proto-Oncogene Proteins c-abl/antagonists & ; inhibitors/chemistry/genetics/metabolism ; Vascular Endothelial Growth Factor Receptor-2/antagonists & ; inhibitors/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1990-02-23
    Description: Identification of a mutant epidermal growth factor (EGF) receptor that does not undergo downregulation has provided a genetic probe to investigate the role of internalization in ligand-induced mitogenesis. Contact-inhibited cells expressing this internalization-defective receptor exhibited a normal mitogenic response at significantly lower ligand concentrations than did cells expressing wild-type receptors. A transformed phenotype and anchorage-independent growth were observed at ligand concentrations that failed to elicit these responses in cells expressing wild-type receptors. These findings imply that activation of the protein tyrosine kinase activity at the cell membrane is sufficient for the growth-enhancing effects of EGF. Thus, downregulation can serve as an attenuation mechanism, without which transformation ensues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wells, A -- Welsh, J B -- Lazar, C S -- Wiley, H S -- Gill, G N -- Rosenfeld, M G -- DDK 13149/DK/NIDDK NIH HHS/ -- DDK 18477/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1990 Feb 23;247(4945):962-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of California-San Diego, La Jolla 92093.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2305263" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Division ; Cell Line ; Down-Regulation ; *Endocytosis ; Enzyme Activation ; Epidermal Growth Factor/pharmacology ; Genetic Vectors ; Moloney murine leukemia virus/genetics ; Mutation ; Phenotype ; Protein-Tyrosine Kinases/metabolism ; Receptor, Epidermal Growth Factor/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1990-12-21
    Description: Human growth hormone (hGH) elicits a diverse set of biological activities including lactation that derives from binding to the prolactin (PRL) receptor. The binding affinity of hGH for the extracellular binding domain of the hPRL receptor (hPRLbp) was increased about 8000-fold by addition of 50 micromolar ZnCl2. Zinc was not required for binding of hGH to the hGH binding protein (hGHbp) or for binding of hPRL to the hPRLbp. Other divalent metal ions (Ca2+, Mg2+, Cu2+, Mn2+, and Co2+) at physiological concentrations did not support such strong binding. Scatchard analysis indicated a stoichiometry of one Zn2+ per hGH.hPRLbp complex. Mutational analysis showed that a cluster of three residues (His18, His21, and Glu174) in hGH and His188 from the hPRLbp (conserved in all PRL receptors but not GH receptors) are probable Zn2+ ligands. This polypeptide hormone.receptor "zinc sandwich" provides a molecular mechanism to explain why nonprimate GHs are not lactogenic and offers a molecular link between zinc deficiency and its association with altered functions of hGH.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cunningham, B C -- Bass, S -- Fuh, G -- Wells, J A -- New York, N.Y. -- Science. 1990 Dec 21;250(4988):1709-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Protein Engineering, Genentech, Inc., South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2270485" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; Chlorides/*pharmacology ; Growth Hormone/*metabolism ; Humans ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Oligonucleotide Probes ; Plasmids ; Protein Conformation ; Receptors, Prolactin/drug effects/genetics/*metabolism ; Restriction Mapping ; Zinc/metabolism/*pharmacology ; *Zinc Compounds
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-08-02
    Description: Size-exclusion chromatography and sedimentation equilbrium studies demonstrated that zinc ion (Zn2+) induced the dimerization of human growth hormone (hGH). Scatchard analysis of 65Zn2+ binding to hGH showed that two Zn2+ ions associate per dimer of hGH in a cooperative fashion. Cobalt (II) can substitute for Zn2+ in the hormone dimer and gives a visible spectrum characteristic of cobalt coordinated in a tetrahedral fashion by oxygen- and nitrogen-containing ligands. Replacement of potential Zn2+ ligands (His18, His21, and Glu174) in hGH with alanine weakened both Zn2+ binding and hGH dimer formation. The Zn(2+)-hGH dimer was more stable than monomeric hGH to denaturation in guanidine-HCl. Formation of a Zn(2+)-hGH dimeric complex may be important for storage of hGH in secretory granules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cunningham, B C -- Mulkerrin, M G -- Wells, J A -- New York, N.Y. -- Science. 1991 Aug 2;253(5019):545-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Protein Engineering, Genentech, South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1907025" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Chromatography, Gel ; Edetic Acid/pharmacology ; Growth Hormone/*metabolism ; Humans ; Kinetics ; Macromolecular Substances ; Models, Molecular ; Protein Binding ; Protein Conformation ; Protein Denaturation ; Spectrophotometry ; Zinc/metabolism/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-03-23
    Description: A strategy of iterative site-directed mutagenesis and binding analysis was used to incorporate the receptor-binding determinants from human growth hormone (hGH) into the nonbinding homolog, human prolactin (hPRL). The complementary DNA for hPRL was cloned, expressed in Escherichia coli, and mutated to introduce sequentially those substitutions from hGH that were predicted by alanine-scanning mutagenesis and other studies to be most critical for binding to the hGH receptor from human liver. After seven rounds of site-specific mutagenesis, a variant of hPRL was obtained containing eight mutations with an association constant for the hGH receptor that was increased more than 10,000-fold. This hPRL variant binds one-sixth as strongly as wild-type hGH, but shares only 26 percent overall sequence identity with hGH. These studies show the feasibility of recruiting receptor-binding properties from distantly related and functionally divergent hormones and show that a detailed functional database can be used to guide the design of a protein-protein interface in the absence of direct structural information.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cunningham, B C -- Henner, D J -- Wells, J A -- New York, N.Y. -- Science. 1990 Mar 23;247(4949 Pt 1):1461-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Protein Engineering, Genentech, Inc. South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2321008" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cloning, Molecular ; Growth Hormone/genetics ; Humans ; Molecular Sequence Data ; Mutation ; Plasmids ; Prolactin/genetics/*metabolism ; Protein Conformation ; Receptors, Somatotropin/*metabolism ; Recombinant Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1991-11-08
    Description: Human growth hormone (hGH) forms a 1:2 complex with the extracellular domain of its receptor-binding protein (hGHbp) as studied by crystallization, size exclusion chromatography, calorimetry, and a previously undescribed fluorescence quenching assay. These and other experiments with protein engineered variants of hGH have led to the identification of the binding determinants for two distinct but adjacent sites on hGH for the hGHbp, and the data indicated that there are two overlapping binding sites on the hGHbp for hGH. Furthermore, the binding of hGH to the hGHbp occurred sequentially; a first hGHbp molecule bound to site 1 on hGH and then a second hGHbp bound to site 2. Hormone-induced receptor dimerization is proposed to be relevant to the signal transduction mechanism for the hGH receptor and other related cytokine receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cunningham, B C -- Ultsch, M -- De Vos, A M -- Mulkerrin, M G -- Clauser, K R -- Wells, J A -- New York, N.Y. -- Science. 1991 Nov 8;254(5033):821-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Protein Engineering, Genentech, Inc., South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1948064" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Monoclonal ; Binding Sites ; Chromatography, Gel ; Growth Hormone/*metabolism ; Humans ; Kinetics ; Macromolecular Substances ; Models, Structural ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Protein Conformation ; Receptors, Somatotropin/genetics/isolation & purification/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-10-12
    Description: Chemokine receptors are critical regulators of cell migration in the context of immune surveillance, inflammation, and development. The G protein-coupled chemokine receptor CXCR4 is specifically implicated in cancer metastasis and HIV-1 infection. Here we report five independent crystal structures of CXCR4 bound to an antagonist small molecule IT1t and a cyclic peptide CVX15 at 2.5 to 3.2 angstrom resolution. All structures reveal a consistent homodimer with an interface including helices V and VI that may be involved in regulating signaling. The location and shape of the ligand-binding sites differ from other G protein-coupled receptors and are closer to the extracellular surface. These structures provide new clues about the interactions between CXCR4 and its natural ligand CXCL12, and with the HIV-1 glycoprotein gp120.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074590/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074590/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Beili -- Chien, Ellen Y T -- Mol, Clifford D -- Fenalti, Gustavo -- Liu, Wei -- Katritch, Vsevolod -- Abagyan, Ruben -- Brooun, Alexei -- Wells, Peter -- Bi, F Christopher -- Hamel, Damon J -- Kuhn, Peter -- Handel, Tracy M -- Cherezov, Vadim -- Stevens, Raymond C -- F32 GM083463/GM/NIGMS NIH HHS/ -- F32 GM083463-03/GM/NIGMS NIH HHS/ -- GM075915/GM/NIGMS NIH HHS/ -- P50 GM073197/GM/NIGMS NIH HHS/ -- P50 GM073197-07/GM/NIGMS NIH HHS/ -- R01 AI037113/AI/NIAID NIH HHS/ -- R01 AI037113-13/AI/NIAID NIH HHS/ -- R01 GM071872/GM/NIGMS NIH HHS/ -- R01 GM081763/GM/NIGMS NIH HHS/ -- R01 GM081763-03/GM/NIGMS NIH HHS/ -- R01 GM089857/GM/NIGMS NIH HHS/ -- R21 AI087189/AI/NIAID NIH HHS/ -- R21 AI087189-02/AI/NIAID NIH HHS/ -- R21 RR025336/RR/NCRR NIH HHS/ -- R21 RR025336-01A1/RR/NCRR NIH HHS/ -- U54 GM074961/GM/NIGMS NIH HHS/ -- U54 GM074961-050001/GM/NIGMS NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Nov 19;330(6007):1066-71. doi: 10.1126/science.1194396. Epub 2010 Oct 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20929726" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chemokine CXCL12 ; Crystallography, X-Ray ; HIV Envelope Protein gp120/metabolism ; Humans ; Membrane Proteins ; Models, Molecular ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Receptors, CXCR4/antagonists & inhibitors/*chemistry/metabolism ; Recombinant Proteins/chemistry ; Spodoptera ; Thiourea/analogs & derivatives/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-01-02
    Description: Alpha-dystroglycan (alpha-DG) is a cell-surface glycoprotein that acts as a receptor for both extracellular matrix proteins containing laminin-G domains and certain arenaviruses. Receptor binding is thought to be mediated by a posttranslational modification, and defective binding with laminin underlies a subclass of congenital muscular dystrophy. Using mass spectrometry- and nuclear magnetic resonance (NMR)-based structural analyses, we identified a phosphorylated O-mannosyl glycan on the mucin-like domain of recombinant alpha-DG, which was required for laminin binding. We demonstrated that patients with muscle-eye-brain disease and Fukuyama congenital muscular dystrophy, as well as mice with myodystrophy, commonly have defects in a postphosphoryl modification of this phosphorylated O-linked mannose, and that this modification is mediated by the like-acetylglucosaminyltransferase (LARGE) protein. These findings expand our understanding of the mechanisms that underlie congenital muscular dystrophy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2978000/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2978000/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoshida-Moriguchi, Takako -- Yu, Liping -- Stalnaker, Stephanie H -- Davis, Sarah -- Kunz, Stefan -- Madson, Michael -- Oldstone, Michael B A -- Schachter, Harry -- Wells, Lance -- Campbell, Kevin P -- 1U54NS053672/NS/NINDS NIH HHS/ -- AI55540/AI/NIAID NIH HHS/ -- P30 DK 54759/DK/NIDDK NIH HHS/ -- P30 DK054759/DK/NIDDK NIH HHS/ -- P41 RR018502/RR/NCRR NIH HHS/ -- R01 AI009484/AI/NIAID NIH HHS/ -- R01 AI009484-40/AI/NIAID NIH HHS/ -- R01 AI009484-41/AI/NIAID NIH HHS/ -- R01 AI045927/AI/NIAID NIH HHS/ -- R01 AI045927-08/AI/NIAID NIH HHS/ -- R01 AI045927-09/AI/NIAID NIH HHS/ -- R01 AI045927-10/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Jan 1;327(5961):88-92. doi: 10.1126/science.1180512.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine, 4283 Carver Biomedical Research Building, 285 Newton Road, Iowa City, IA 52242-1101, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20044576" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carbohydrate Conformation ; Cell Line ; Dystroglycans/chemistry/*metabolism ; Glycosylation ; Humans ; Laminin/*metabolism ; Magnetic Resonance Spectroscopy ; Mannose/*metabolism ; Mass Spectrometry ; Membrane Proteins/metabolism ; Mice ; Mice, Inbred C57BL ; Muscle, Skeletal/metabolism ; Muscular Dystrophies/metabolism ; Muscular Dystrophy, Animal/metabolism ; N-Acetylglucosaminyltransferases/genetics/metabolism ; Phosphorylation ; Protein Binding ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...