ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • LUNAR AND PLANETARY EXPLORATION  (35)
  • Molecular Sequence Data  (22)
  • Life and Medical Sciences  (19)
  • Cell Line  (15)
  • 2005-2009  (12)
  • 1990-1994  (72)
  • 1
    ISSN: 0886-1544
    Keywords: actomyosin ; smooth muscle contraction ; nonmuscle cell motility ; microinjection ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The effects of monoclonal anti-caldesmon antibodies, C2, C9, C18, C21, and C23, on the binding of caldesmon to F-actin/F-actin-tropomyosin filaments and to Ca++/calmodulin were examined in an in vitro reconstitution system. In addition, the antibody epitopes were mapped by Western blot analysis of NTCB (2-nitro-5-thiocyanobenzoic acid) and CNBr (cyanogen bromide) fragments of caldesmon. Both C9 and C18 recognize an amino terminal fragment composed of amino acid residues 19 to 153. The C23 epitope lies within a fragment ranging from residues 230 to 386. Included in this region is a 13-residue repeat sequence. Interestingly this repetitive sequence shares sequence similarity with a sequence found in nuclear lamin A, a protein which is also recognized by C23 antibody. Therefore, it is likely that the C23 epitope corresponds to this 13-residue repeat sequence. A carboxyl-terminal 10K fragment contains the epitopes for antibodies C2 and C21. Among these antibodies, only C21 drastically inhibits the binding of caldesmon to F-actin/F-actin-tropomyosin filaments and tc Ca++/calmodulin. When the molar ratio of monoclonal antibody C21 to caldesmon reached 1.0, a maximal inhibition (90%) on the binding of caldesmon to F-actin filaments was observed. However, it required double amounts of C21 antibody to exhibit a maximal inhibition of 70% on the binding of caldesmon to F-actin-tropomyosin filaments. These results suggest that the presence of tropomyosin in F-actin enhances caldesmon's binding. Furthermore, C21 antibody also effectively inhibits the caldesmon binding to Ca++/calmodolin. The kinetics of C21 inhibition on caldesmon's binding to Ca++/calmodulin is very similar to the inhibition obtained by preincubation of caldesmon with free Ca++/calmodulin. This result suggests that there is only one Ca++/calmodulin binding domain on caldesmon and this domain appears to be very close to the C21 epitope. Apparently, the Ca++/calmodulin-binding domain and the actin-binding domain are very close to each other and may interfere with each other. In an accompanying paper, we have further demonstrated that microinjection of C21 antibody into living chicken embryo fibroblasts inhibit intracellular granule movement, suggesting an in vivo interference with the functional domains [Hegmann et al., 1991: Cell Motil. Cytoskeleton 20:109-120].
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 44 (1990), S. 199-205 
    ISSN: 0730-2312
    Keywords: polyamine synthesis ; polyamine transport ; ornithine decarboxylase control ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The management of polyamine synthesis and polyamine pools differs fundamentally from that of most other small molecular-weight endproducts. The polyamines are vital to growth and important cellular functions, but they are toxic in excess. I argue here that their multivalent cationic character, leading to binding to cell constituents, precludes fluent feedback inhibition of synthesis. This has led to the development of elaborate alternative regulatory mechanisms controlling ornithine decarboxylase, the key initial enzyme of the pathway. Poorly regulated polyamine synthesis and the toxicity of polyamines impose upon cells a need to control uptake and to dispose of excess polyamines. Recent data on polyamine transport suggest unorthodox mechanisms of accomplishing these functions.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0730-2312
    Keywords: angiogenesis ; basement membrane ; integrins ; phosphorylation ; cord formation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: When cultured on a basement membrane substratum, endothelial cells undergo a rapid series of morphological and functional changes which result in the formation of histotypic tube-like structures, a process which mimics in vivo angiogenesis. Since this process is probably dependent on several cell adhesion and cell signaling phenomena, we examined the roles of integrins and protein kinase C in endothelial cell cord formation. Polyclonal antisera directed against the entire vitronectin (αvβ3) and fibronectin (α5β1) receptors inhibited cord formation. Subunit-specific monoclonal antibodies to αv, β3, and β1 integrin subunits inhibited cord formation, while monoclonal antibodies to α3 did not, which implicated the vitronectin receptor, and not the fibronectin receptor, in vascular formation. Protein kinase C inhibitors inhibited cord formation, while phorbol 12-myristate 13-acetate (PMA) caused endothelial cells to form longer cords. Since the vitronectin receptor has been shown to be phosphorylated in an in vitro system by protein kinase C, the possible functional link between the vitronectin receptor and protein kinase C during cellular morphogenesis was examined. The vitronectin receptor was more highly phosphorylated in cord-forming endothelial cells on basement membrane than in monolayer cells on vitronectin. Furthermore, this phosphorylation was inhibited by protein kinase C inhibitors, and PMA was required to induce vitronectin receptor phosphorylation in endothelial cells cultured on vitronectin. Colocalization studies were also performed using antisera to the vitronectin receptor and antibodies to protein kinase C. Although no strict colocalization was found, protein kinase C was localized in the cytoskeleton of endothelial cells initially plated on basement membrane or on vitronectin, and it translocated to the plasma membrane of C-shaped cord-forming cells on basement membrane. Thus, both the vitronectin receptor and protein kinase C play a role in in vitro cord formation. © 1993 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Microscopy Research and Technique 27 (1994), S. 165-193 
    ISSN: 1059-910X
    Keywords: Cryopreservation ; Mammalian oocyte ; Cytogenetics ; Fertilization ; Embryogenesis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Natural Sciences in General
    Notes: This study examined the effects of cryopreservation on cellular organization, chromosomal complement, and developmental potential of immature and mature mouse and human oocytes. Chromosomal analyses were performed by DNA fluorescence microscopy and karyotyping on the same metaphase II-stage oocytes before and after freezing. Cellular analyses involved electron microscopy, time-lapse video recording, and fluorescent-probe microscopy of cortical granules. The findings demonstrate that while profound cytoplasmic, nuclear, and nucleolar alterations occur in the immature oocyte during cryopreservation, an apparently normal nucleus and cytoplasm is re-established progressively after thawing and culture. The resulting oocytes mature at high frequency and for the mouse, are fertilizable and capable of normal preimplantation of embryogenesis. Cryopreservation of mature mouse and human oocytes is not accompanied by a significant increase in the frequency of aneuploidy. However, cryopreserved human oocytes, while fertilizable, arrest development during the early cleavage stages and display aberrant patterns of cytokinesis. The possible etiologies of developmental failure in the human embryo that may be related to oocyte cryopreservation, as well as the potential benefits of cryopreservation of the immature oocyte, are discussed with respect to clinical and commercial applications. © 1994 Wiley-Liss, Inc.
    Additional Material: 118 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Microscopy Research and Technique 29 (1994), S. 319-327 
    ISSN: 1059-910X
    Keywords: Astrocytes ; Cell culture ; Stellation ; Protein kinase C ; Scanning confocal light microscopy ; Phorbol ester ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Natural Sciences in General
    Notes: Stellation is the process by which astrocytes change from epithelial-like to process-bearing cells. Stellation occurs following activation of either cyclic AMP-dependent protein kinase or protein kinase C. This process occurs through tubulin-dependent rearrangement of the cytoskeleton. We have evaluated the ability of phorbol, 12-myristate, 13-acetate (PMA) to induce astrocyte stellation. Astrocytes from five brain regions (cerebellum, cerebral cortex, hippocampus, diencephalon, and brain-stem) were examined to determine if all astrocytes would exhibit similar responses to this activator of protein kinase C. Stellation was evaluated following cell fixation by either phase optics using conventional light microscop, or scanning laser confocal light microscopy of cultures prepared using immunocytochemistry for tubulin and glial fibrillary acidic protein. Both the number of cells responding to PMA and the sensitivity to PMA varied for astrocytes from each brain region. PMA-induced stellation was most robust in cerebellar and brainstem astrocytes, with greater than 70% responding. Less than 40% of hippocampal and diencephalic astrocytes responded to PMA at the maximum does (10-5 M). PMA also induced different numbers of processes or branching patterns of processes on astrocytes from different brain regions. The protein kinase C induced stellation response in astrocytes supports the hypothesis that astrocytes contribute to neural plasticity. © 1994 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0197-8462
    Keywords: magnetic fields ; exposure system ; stray fields ; Merritt coils ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Exposure systems that provide good magnetic field uniformity, minimum stray fields, and minimal heating, vibration, and hum, as well as capability for true sham exposure in which current flows in the coils, are needed to determine rigorously the biological effects of weak magnetic fields. Designs based on acrylic polymer coil support structures and twisted pair bifilary coil windings were employed to fabricate several different systems for the exposure of laboratory animals and cell cultures to magnetic fields. These systems exhibit excellent performance characteristics in terms of exposure field uniformity, stray field containment, and exposure field cancellation in the sham exposure mode. A custom-written computer program was used to determine the best arrangement for coils with regard to field uniformity in the exposure volume and stray field containment. For in vivo exposures, modules were made up of four Merritt four-coil sets, built into a single structure and positioned to form an octapole with fields directed in the horizontal plane. For in vitro applications, two different coil configurations were selected to produce the vertical fields required. A quadrupole system, comprising modules consisting of two Merritt four-coil sets arranged side by side to limit stray fields, was built as a prototype. In the second configuration, one Merritt four-coil set was positioned inside the other to form a concentric coil set. In both in vitro systems, exposure chambers were connected to remote commercial incubators in order to reduce ambient magnetic fields in the exposure volume. An active field cancellation circuit was developed for reducing ambient AC magnetic fields in the in vitro sham exposure chamber, when necessary. These design and fabrication approaches provide systems that offer uniform field exposures and excellent stray field containment when needed and are portable, washable, and relatively inexpensive. © 1994 Wiley-Liss, Inc.This article is a US Government work and, as such, is in the public domain in the United States of America.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    BioEssays 13 (1991), S. 11-15 
    ISSN: 0265-9247
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Since the growth cone was first described a century ago by Cajal, considerable effort has been directed towards understanding the mechanisms responsible for its guidance. Traditionally, attention has focussed on the role of adhesive molecules in determining neural development. Recently, it has become apparent that inhibitory interactions may play a crucial part in axonal navigation. A common feature of inhibition seen in three model systems (peripheral nerve segmentation, retinotectal mapping and CNS/PNS segregation) is a collapse of the motile structures of the growth cone. It is increasingly clear that the identification of molecular mechanisms of inhibition, as well as those of adhesion, will be of fundamental importance to understanding neural development.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    Developmental Genetics 11 (1990), S. 110-122 
    ISSN: 0192-253X
    Keywords: Embryonic cell surface ; glycoconjugates ; monoclonal antibodies ; developmental expression of glycoconjugates ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Molecular markers for specific cell lineages would be useful in studies of cellular differentiation. To isolate such markers monoclonal antibodies (MoABs) were raised against plasma membranes isolated from gastrulating Xenopus embryos. Those antibodies that recognized subsets of cells within the embryo were selected by indirect immunofluorescence. The analysis of eight such MoAbs is presented. Western blot analysis showed that all but one MoAb recognized a complex pattern of glycoconjugates associated with glycoproteins. All the antigens recognized by the MoAbs were maternal in origin and displayed similar spatial patterns of pregastrular expression. This pattern of immunoreactivity at the apical surface was inherited passively during cleavage by the resulting superficial blastomeres suggesting that ectodermal specific markers of maternal origin are pre-localized to the cortical ooplasm in mature oocytes. We suggest that these maternal components may be specific glycosyl transferases. Three different patterns of expression were observed during gastrulation as exemplified by MoAbs 1F10C1, 3A4D1, and 6F10B6. MoAb 6F10B6 was specific for both neural and non-neural epithelium. MoAb 3A4D1 was specific for non-neural epidermis. MoAb 1F10C1 appeared to recognize a protein epitope on an extracellular component expressed by the superificial and involuting epithelial cells. The pattern of expression for the 1F10C1 antigen suggests that it may play a role in facilitating the movement of the involuting cells during gastrulation.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 145 (1990), S. 187-199 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Actively proliferating human retinal pigment epithelial (RPE) cells grown in tissue culture possess keratin-containing intermediate filaments that react with a combination of AE1 and AE3 anti-keratin monoclonal antibodies. Antibody reactivity is lost, however, from RPE cells as the cell population ceases to proliferate when it approaches confluence and attains morphological characteristics more similar to those in vivo. In contrast, clone 8.13 anti-keratin antibody stains all cells in the culture at all stages of the growth cycle and cell densities. These findings were reflected in vivo using retinal pigment epithelium taken directly from the eye. Normal non-proliferating RPE cells bound 8.13 antibody to cytoskeletal structures, as judged by indirect immunofluorescence, but did not bind AE1/AE3 antibodies. However, proliferating dedifferentiated RPE cells from the vitreous humor of patients with proliferative vitreoretinopathy possess filaments that bind both AE1/AE3 and 8.13 antibodies. Thus it appears that structures detected by AE1/AE3 antibodies only occur in actively growing RPE cells in vitro and in vivo. Keratins produced by RPE cells were identified using Western blotting. Species with molecular masses of 54 (keratin 7), 52 (keratin 8), 42 (keratin 18), and 40 (keratin 19) kiloDaltons were the most abundant in proliferating cultured cells, but cells isolated directly from the eye were found to lack keratin 7 and 19. Keratin 19 was, however, observed in proliferating RPE cells from some patients with proliferative vitreoretinopathy. The latter findings explain the differential staining observed with AE1/AE3 antibodies in cells in culture and isolated directly from the eye since these antibodies interact primarily with keratin 19 which is absent from non-proliferating RPE cells. In contrast to the presence of keratin-containing intermediate filaments in human RPE cells in vivo, there are apparently no detectable vimentin-containing cytoskeletal structures. However, all RPE cells cultured in vitro develop filaments composed of vimentin which persist in cells that have reached confluence.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Incubation of alveolar macrophages or hepatocytes in media in which Na+ is replaced by K+ (‘isotonic-K buffer’) inhibited the movement of internalized ligand from late endosomes to lysosomes (Ward et al.: journal of Cell Biology 110:1013-1022, 1990). In this study we investigate the mechanism responsible for the isotonic-K+ block in movement of ligand from late endosomes to lysosomes. We observed that iso-K+ inhibition of endosome-lysosome fusion is not unique to alveolar macrophages or hepatocytes but can be seen in a variety of cell types including J774 and Hela cells. The inhibition in intracellular ligand movement was time dependent with the maximum change occurring after 60 minutes. Once established the inhibition resulted in a prolonged and apparently permanent decrease in vesicle movement. Cells were able to recover from the effects of iso-K+ buffers over a time course of 5-10 minutes when placed back in Na+-containing media. The effect of iso-K+ buffers was independent of intracel-lular pH changes and appeared to involve cell swelling. When cells were incubated in iso-K+ buffers under conditions in which cell volume changes were reduced, intracellular ligand movement approached normal levels. Such conditions included replacing Cl- with the less permeant anion gluconate, and by addition of sucrose to isotonic-K+ buffers. Analysis of the mechanism by which changes in cell volume could alter intracellular movement ruled out changes in cyclic nucleotides. Ca2+, or microtubules. These results suggest that changes in cell shape or volume can alter intracellular transport systems by novel routes.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...