ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 26 (1993), S. 248-261 
    ISSN: 0886-1544
    Keywords: human fibroblast tropomyosins ; actin-binding protein ; caldesmon ; actin-tropomyosin-activated HMM ATPase ; motility ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: At least eight tropomyosin isoforms (hTM1, hTM2, hTM3, hTM4, hTM5, hTM5a, hTM5b, and hTMsmα) are expressed from four distinct genes in human fibroblasts. In order to elucidate isoform properties, we have subcloned hTM3 and hTM5 full-length cDNAs, as well as their chimeric cDNAs into the bacterial expression pET8C system. Bacterially expressed tropomyosin isoforms (called PEThTM3, PEThTM5. PEThTM5/3, and PEThTM3/5) were purified and characterized. Under optimal binding conditions, the binding of PEThTM5 isoform to F-actin was stronger than the PEThTM3 isoform. However, analysis of actin-binding by the McGhee and von Hippel equation revealed that PEThTM3 exhibits higher cooperativity in binding than PEThTM5 does. Furthermore, the chimera PEThTM5/3 which possessed the N-terminal fragment of hTM5 fused to the C-terminal fragment of hTM3 had even stronger actin binding ability. The reverse chimera PEThTM3/5 which possessed the N-terminal fragment of hTM3 fused to the C-terminal fragment of hTM5 demonstrated greatly reduced affinity to actin filaments. In addition, both chimeras had different KCl requirements for optimal binding to F-actin than their parental tropomyosins. A bacterially made C-terminal fragment of human fibroblast caldesmon (PETCaD39) and native chicken gizzard caldesmon were both able to enhance the actin-binding of these bacterially expressed tropomyosins. However, PETCaD39′s enhancement of binding to F-actin was greater for PEThTM5 than PEThTM3. Under 30 mM KCl and 4 mM MgCl2, the low Mr isoform PEThTM5 appeared to be able to amplify the actin-activated HMM ATPase activity by 4.7 fold, while the high Mr isoform PEThTM3 stimulated the activity only 1.5 fold. The higher enhancement of ATPase activity by PEThTM5 than by PEThTM3 suggested that the low Mr isoform hTM5 may be more involved in modulating nonmuscle cell motility than hTM3. These results further suggested that different isoforms of tropomyosin might have finite differences in their specific functions (e.g., cytoskeletal vs. motile) inside the cell. © 1993 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0886-1544
    Keywords: actomyosin ; smooth muscle contraction ; nonmuscle cell motility ; microinjection ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The effects of monoclonal anti-caldesmon antibodies, C2, C9, C18, C21, and C23, on the binding of caldesmon to F-actin/F-actin-tropomyosin filaments and to Ca++/calmodulin were examined in an in vitro reconstitution system. In addition, the antibody epitopes were mapped by Western blot analysis of NTCB (2-nitro-5-thiocyanobenzoic acid) and CNBr (cyanogen bromide) fragments of caldesmon. Both C9 and C18 recognize an amino terminal fragment composed of amino acid residues 19 to 153. The C23 epitope lies within a fragment ranging from residues 230 to 386. Included in this region is a 13-residue repeat sequence. Interestingly this repetitive sequence shares sequence similarity with a sequence found in nuclear lamin A, a protein which is also recognized by C23 antibody. Therefore, it is likely that the C23 epitope corresponds to this 13-residue repeat sequence. A carboxyl-terminal 10K fragment contains the epitopes for antibodies C2 and C21. Among these antibodies, only C21 drastically inhibits the binding of caldesmon to F-actin/F-actin-tropomyosin filaments and tc Ca++/calmodulin. When the molar ratio of monoclonal antibody C21 to caldesmon reached 1.0, a maximal inhibition (90%) on the binding of caldesmon to F-actin filaments was observed. However, it required double amounts of C21 antibody to exhibit a maximal inhibition of 70% on the binding of caldesmon to F-actin-tropomyosin filaments. These results suggest that the presence of tropomyosin in F-actin enhances caldesmon's binding. Furthermore, C21 antibody also effectively inhibits the caldesmon binding to Ca++/calmodolin. The kinetics of C21 inhibition on caldesmon's binding to Ca++/calmodulin is very similar to the inhibition obtained by preincubation of caldesmon with free Ca++/calmodulin. This result suggests that there is only one Ca++/calmodulin binding domain on caldesmon and this domain appears to be very close to the C21 epitope. Apparently, the Ca++/calmodulin-binding domain and the actin-binding domain are very close to each other and may interfere with each other. In an accompanying paper, we have further demonstrated that microinjection of C21 antibody into living chicken embryo fibroblasts inhibit intracellular granule movement, suggesting an in vivo interference with the functional domains [Hegmann et al., 1991: Cell Motil. Cytoskeleton 20:109-120].
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0886-1544
    Keywords: human fibroblast tropomyosins ; normal and transformed cells ; actin-binding protein ; cDNA cloning ; expression of tropomyosin isoforms ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: A tropomyosin-specific oligonucleotide probe (REN29) designed to hybridize to all known human tropomyosin isoforms was used to study tropomyosin mRNA levels in normal and transformed human cells. At least four different sizes of RNAs were detected in normal human fibroblast KD cells by Northern blot analysis. The major bands of 1.1 kb RNA for hTM1 and 3.0 kb RNA for hTM4 were decreased substantially in various transformed cell lines. One of the minor RNA bands (2.0 kb for hTM2 and hTM3) appeared to be absent in a human pancreatic carcinoma cell line. The level of the other minor RNA band (2.5 kb for hTM5) was found to be unchanged or slightly decreased in transformed cells. This differential expression of tropomyosin isoforms at the RNA level was not totally in agreement with the difference in the protein amounts found in normal and transformed cells, suggesting that translational control may also play an important role in the expression of some tropomyosin isoforms. The REN29 probe was further used to screen γgt10 and γgt11 cDNA libraries, which were constructed from poly(A)+ RNAs of human fibroblast cell lines HuT-14 and WI-38, respectively. In addition to cDNA clones encoding known isoforms, we obtained three classes of new cDNA clones that encode two low Mr isoforms (hTM5a and hTM5b), and a high Mr isoform (hTMsmα). Sequence comparison revealed that hTM5a and hTM5b are alternatively spliced products derived from the same gene that encodes hTM2 and hTM3. Northern blot analysis and amino acid sequence comparison suggested that the hTMsmα represents a smooth muscle tropomyosin which is also expressed in human fibroblasts. The exon specific for, and common to, hTM5a and hTM5b was found to be highly expressed in small intestine. However, there was no detectable expression of this exon in stomach and skeletal muscle. The difference in tissue-specific expression suggests that different isoforms may perform distinct functions in different tissues. © 1993 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1992-05-01
    Print ISSN: 0167-4838
    Electronic ISSN: 1879-2588
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...