ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 162 (1995), S. 147-153 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Changes in intracellular Ca2+ homeostasis are thought to contribute to cell dysfunction in oxidative stress. The hypoxanthine-xanthine oxidase system (X-XO) mobilizes Ca2+ from intracellular stores and induces a marked rise in cytosolic calcium in different cell types. To identify the reactive O2 species involved in the disruption of calcium homeostasis by X-XO, we studied the effect of X-XO on [Ca2+]i by spectrofluorimetry with fura-2 in human umbilical vein endothelial cells (HUVEC). The [Ca2+]i response to X-XO was essentially diminished by superoxide dismutase (SOD) (200 U/ml) and catalase (CAT) (200 U/ml), which scavenge the superoxide anion, O2-, or H2O2, respectively. The [Ca2+]i increase stimulated by 10 nmol H2O2/ml/min, generated from the glucose-glucose oxidase system, or 10 μM H2O2, given as bolus, was about a third of that induced by X-XO (10 nmol O2-/ml/min) but was comparable to that induced by X-XO in the presence of SOD. The X-XO - stimulated [Ca2+]i increase was significantly reduced by 100 μM o-phenanthroline, which inhibits the iron-catalysed formation of the hydroxyl radical. On the other hand, the [Ca2+]i response to low dose X-XO (1 nmol O2-/ml/min) was markedly enhanced in the presence of 1 μM H2O2, which itself had no effect on [Ca2+]i. More than 50% of this synergistic effect was prevented by o-phenanthroline. These results indicate that the effect of X-XO on calcium homeostasis appears to result from an interaction of O2- and H2O2, which could be explained by the formation of the hydroxyl radical. © 1995 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...