ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1939
    Keywords: Key wordsBetula ; Carbon dioxide ; Climate change ; heat stress ; Freezing stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Despite predictions that both atmospheric CO2 concentrations and air temperature will rise together, very limited data are currently available to assess the possible interactive effects of these two global change factors on temperate forest tree species. Using yellow birch (Betula alleghaniensis) as a model species, we studied how elevated CO2 (800 vs. 400 μl l−1) influences seedling growth and physiological responses to a 5°C increase in summer air temperatures (31/26 vs. 26/21°C day/night), and how both elevated CO2 and air temperature during the growing season influence seedling ability to survive freezing stress during the winter dormant season. Our results show that while increased temperature decreases seedling growth, temperature-induced growth reductions are significantly lower at elevated CO2 concentrations (43% vs. 73%). The amelioration of high-temperature stress was related to CO2-induced reductions in both whole-shoot dark respiration and transpiration. Our results also show that increased summer air temperature, and to a lesser degree CO2 concentration, make dormant winter buds less susceptible to freezing stress. We show the relevance of these results to models used to predict how climate change will influence future forest species distribution and productivity, without considering the direct or interactive effects of CO2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...