ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Carbon cycle  (2)
  • Decadal trends
Collection
Keywords
Years
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Remote Sensing of Environment 135 (2013): 77-91, doi:10.1016/j.rse.2013.03.025.
    Description: Photosynthetic production of organic matter by microscopic oceanic phytoplankton fuels ocean ecosystems and contributes roughly half of the Earth's net primary production. For 13 years, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission provided the first consistent, synoptic observations of global ocean ecosystems. Changes in the surface chlorophyll concentration, the primary biological property retrieved from SeaWiFS, have traditionally been used as a metric for phytoplankton abundance and its distribution largely reflects patterns in vertical nutrient transport. On regional to global scales, chlorophyll concentrations covary with sea surface temperature (SST) because SST changes reflect light and nutrient conditions. However, the ocean may be too complex to be well characterized using a single index such as the chlorophyll concentration. A semi-analytical bio-optical algorithm is used to help interpret regional to global SeaWiFS chlorophyll observations from using three independent, well-validated ocean color data products; the chlorophyll a concentration, absorption by CDM and particulate backscattering. First, we show that observed long-term, global-scale trends in standard chlorophyll retrievals are likely compromised by coincident changes in CDM. Second, we partition the chlorophyll signal into a component due to phytoplankton biomass changes and a component caused by physiological adjustments in intracellular chlorophyll concentrations to changes in mixed layer light levels. We show that biomass changes dominate chlorophyll signals for the high latitude seas and where persistent vertical upwelling is known to occur, while physiological processes dominate chlorophyll variability over much of the tropical and subtropical oceans. The SeaWiFS data set demonstrates complexity in the interpretation of changes in regional to global phytoplankton distributions and illustrates limitations for the assessment of phytoplankton dynamics using chlorophyll retrievals alone.
    Description: The authors would like to acknowledge the NASA Ocean Biology and Biogeochemistry program for its long-term support of satellite ocean color research and the Orbital Sciences Corporation and GeoEye who were responsible for the launch, satellite integration and on-orbit management the SeaWiFS mission.
    Keywords: Ocean color ; SeaWiFS ; Phytoplankton ; Colored dissolved organic matter ; Decadal trends
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C07032, doi:10.1029/2007JC004598.
    Description: This paper examines the sensitivity of atmospheric pCO2 to changes in ocean biology that result in drawdown of nutrients at the ocean surface. We show that the global inventory of preformed nutrients is the key determinant of atmospheric pCO2 and the oceanic carbon storage due to the soft-tissue pump (OCS soft ). We develop a new theory showing that under conditions of perfect equilibrium between atmosphere and ocean, atmospheric pCO2 can be written as a sum of exponential functions of OCS soft . The theory also demonstrates how the sensitivity of atmospheric pCO2 to changes in the soft-tissue pump depends on the preformed nutrient inventory and on surface buffer chemistry. We validate our theory against simulations of nutrient depletion in a suite of realistic general circulation models (GCMs). The decrease in atmospheric pCO2 following surface nutrient depletion depends on the oceanic circulation in the models. Increasing deep ocean ventilation by increasing vertical mixing or Southern Ocean winds increases the atmospheric pCO2 sensitivity to surface nutrient forcing. Conversely, stratifying the Southern Ocean decreases the atmospheric CO2 sensitivity to surface nutrient depletion. Surface CO2 disequilibrium due to the slow gas exchange with the atmosphere acts to make atmospheric pCO2 more sensitive to nutrient depletion in high-ventilation models and less sensitive to nutrient depletion in low-ventilation models. Our findings have potentially important implications for both past and future climates.
    Description: While at MIT, I.M. was supported by the NOAA Postdoctoral Program in Climate and Global Change, administered by the University Corporation for Atmospheric Research.
    Keywords: Carbon cycle ; Preformed nutrient ; Nutrient depletion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/postscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 20 (2006): GB2002, doi:10.1029/2005GB002530.
    Description: Regional air-sea fluxes of anthropogenic CO2 are estimated using a Green's function inversion method that combines data-based estimates of anthropogenic CO2 in the ocean with information about ocean transport and mixing from a suite of Ocean General Circulation Models (OGCMs). In order to quantify the uncertainty associated with the estimated fluxes owing to modeled transport and errors in the data, we employ 10 OGCMs and three scenarios representing biases in the data-based anthropogenic CO2 estimates. On the basis of the prescribed anthropogenic CO2 storage, we find a global uptake of 2.2 ± 0.25 Pg C yr−1, scaled to 1995. This error estimate represents the standard deviation of the models weighted by a CFC-based model skill score, which reduces the error range and emphasizes those models that have been shown to reproduce observed tracer concentrations most accurately. The greatest anthropogenic CO2 uptake occurs in the Southern Ocean and in the tropics. The flux estimates imply vigorous northward transport in the Southern Hemisphere, northward cross-equatorial transport, and equatorward transport at high northern latitudes. Compared with forward simulations, we find substantially more uptake in the Southern Ocean, less uptake in the Pacific Ocean, and less global uptake. The large-scale spatial pattern of the estimated flux is generally insensitive to possible biases in the data and the models employed. However, the global uptake scales approximately linearly with changes in the global anthropogenic CO2 inventory. Considerable uncertainties remain in some regions, particularly the Southern Ocean.
    Description: This research was financially supported by the National Aeronautics and Space Administration under grant NAG5- 12528. N. G. also acknowledges support by the National Science Foundation (OCE-0137274). Climate and Environmental Physics, Bern acknowledges support by the European Union through the Integrated Project CarboOcean and the Swiss National Science Foundation.
    Keywords: Anthropogenic CO2 ; Carbon cycle ; Inverse modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/postscript
    Format: application/x-tex
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...