ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: A new pyroclastic stratigraphy is presented for the island of Ischia, Italy, for the period ∼75–50 ka BP. The data indicate that this period bore witness to the largest eruptions recorded on the island and that it was considerably more volcanically active than previously thought. Numerous vents were probably active during this period. The deposits of at least 10 explosive phonolite to basaltictrachyandesite eruptions are described and interpreted. They record a diverse range of explosive volcanic activity including voluminous fountain-fed ignimbrite eruptions, fallout from sustained eruption columns, block-and-ash flows, and phreatomagmatic eruptions. Previously unknown eruptions have been recognised for the first time on the island. Several of the eruptions produced pyroclastic density currents that covered the whole island as well as the neighbouring island of Procida and parts of the mainland. The morphology of Ischia was significantly different to that seen today, with edifices to the south and west and a submerged depression in the centre. The largest volcanic event, the Monte Epomeo Green Tuff (MEGT) resulted in caldera collapse across all or part of the island. It is shown to comprise at least two thick intracaldera ignimbrite flowunits, separated by volcaniclastic sediments that were deposited during a pause in the eruption. Extracaldera deposits of the MEGT include a pumice fall deposit emplaced during the opening phases of the eruption, a widespread lithic lag breccia outcropping across much of Ischia and Procida, and a distal ignimbrite in south-west Campi Flegrei. During this period the style and magnitude of volcanism was dictated by the dynamics of a large differentiated magma chamber, which was partially destroyed during the MEGT eruption. This contrasts with the small-volume Holocene and historical effusive and explosive activity on Ischia, the timing and distribution of which has been controlled by the resurgence of the Monte Epomeo block. The new data contribute to a clearer understanding of the long-term volcanic and magmatic evolution of Ischia.
    Description: Published
    Description: 583-603
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: JCR Journal
    Description: reserved
    Keywords: Pyroclastic stratigraphy ; Explosive volcanism ; Caldera collapse ; Ischia ; Late Pleistocene ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Abstract A new pyroclastic stratigraphy is presented for the island of Ischia, Italy, for the period ∼75–50 ka BP. The data indicate that this period bore witness to the largest eruptions recorded on the island and that it was consider- ably more volcanically active than previously thought. Numerous vents were probably active during this period. The deposits of at least 10 explosive phonolite to basaltic- trachyandesite eruptions are described and interpreted. They record a diverse range of explosive volcanic activity including voluminous fountain-fed ignimbrite eruptions, fallout from sustained eruption columns, block-and-ash flows, and phreatomagmatic eruptions. Previously un- known eruptions have been recognised for the first time on the island. Several of the eruptions produced pyroclastic density currents that covered the whole island as well as the neighbouring island of Procida and parts of the mainland. The morphology of Ischia was significantly different to that seen today, with edifices to the south and west and a submerged depression in the centre. The largest volcanic event, the Monte Epomeo Green Tuff (MEGT) resulted in caldera collapse across all or part of the island. It is shown to comprise at least two thick intracaldera ignimbrite flow- units, separated by volcaniclastic sediments that were deposited during a pause in the eruption. Extracaldera de- posits of the MEGT include a pumice fall deposit emplaced during the opening phases of the eruption, a widespread lithic lag breccia outcropping across much of Ischia and Procida, and a distal ignimbrite in south-west Campi Flegrei. During this period the style and magnitude of volcanism was dictated by the dynamics of a large differentiated magma chamber, which was partially destroyed during the MEGT eruption. This contrasts with the small-volume Holocene and historical effusive and explosive activity on Ischia, the timing and distribution of which has been controlled by the resurgence of the Monte Epomeo block. The new data contribute to a clearer understanding of the long-term volcanic and magmatic evolution of Ischia.
    Description: Published
    Description: On line First
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: JCR Journal
    Description: reserved
    Keywords: Pyroclastic stratigraphy ; Explosive volcanism ; Caldera collapse ; Ischia ; Late Pleistocene ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-03
    Description: The role of pre-existing tectonic structures and regional stress regime on the geometry of calderas is widely recognized in the more recent literature on this topic. In fact, although in many cases the shape of calderas is broadly circular at a great scale, a detailed study of the collapse structures, almost always evidences the presence of linear features inherited from the “pre-caldera” regional tectonic setting. These features, commonly visible in the outcropping rocks that form the pre-volcanic basement, also testify the regional stress field in which volcanism took place. A complete range of increasing complexity examples exists in nature, from elliptical calderas, with a variable degree of ellipticity, to fully irregular calderas, with large linear border sectors due to re-activation of pre-existing regional faults. Elliptical calderas are usually associated with continental rifting, in which regional extension is marked by different horizontal stress components. In these cases the elongation of calderas is parallel to the trend of the regional structures. In some other cases the elongation of the calderas is perpendicular or oblique to the rift structures. This suggests that additional factors may influence the formation of these calderas and the related magma chambers at depth. Examples of such transverse calderas are found along the oceanic ridge of Iceland and along the East African Rift System. Recent studies demonstrated that re-activation of pre-existing structures, orthogonal to the main rift direction, controlled migration and storage of magma bodies at depth, and conditioned activation of volcanism and caldera formation at shallower levels. These so-called transfer structures control the emplacement of surface magma chambers and magma extrusion mainly in that regions in which tectonism and deformational history are very complex, as in the case of the Apennine chain and the peri-Tyrrhenian area. Where multiple extensional systems intersects to each other, transverse depressions are formed, and volcanism is dominated by caldera-forming eruptions. In these cases it is well evident the control exerted by pre-existing regional structures on the geometry of calderas. Some of these calderas have been later affected by resurgence processes, in which the uplifted blocks are bordered by faults whose geometry is inherited by the pre-caldera regional tectonic setting. The Campi Flegrei caldera and the island of Ischia are good examples of complex, resurgent calderas, characterized by a non regular shape, with large linear rim sectors, for which it is possible to demonstrate the control exerted by pre-existing regional tectonic structures
    Description: Published
    Description: 9 -22
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: N/A or not JCR
    Description: restricted
    Keywords: Caldera collapse ; Block resurgence ; Regional tectonics ; Volcano-tectonics ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-04-22
    Description: New geochemical and isotopic data on volcanic rocks spanning the period ~75–50 ka BP on Ischia volcano, Italy, shed light on the evolution of the magmatic system before and after the catastrophic, caldera-forming Monte Epomeo Green Tuff (MEGT) eruption. Volcanic ac tivity during this period was influenced by a large, composite and differentiating magmatic system, replenished several times with isotopically distinct magmas of deepprovenance. Chemical and isotopic variations highlight that the pre-MEGT eruptions were fed by trachytic/phonolitic magmas from an isotopically zoned reservoir that were poorly enriched in radiogenic Sr and became progressively less radiogenic with time. Just prior to the MEGT eruption, the magmatic system was recharged by an isotopically distinct magma, relatively more enriched in radiogenic Sr with respect to the previously erupted magmas. This second magma initially fed several SubPlinian explosive eruptions and later supplied the climactic, phonolitic-to-trachytic MEGT eruption(s). Isotopic data, together with erupted volume estimations obtained for MEGT eruption(s), indicate that 〉5–10 km3of this relatively enriched magma had accumulated in the Ischia plumbing system. Geochemical modelling indicates that it accumulated at shallow depths (4–6 km), over a period of ca. 20 ka. After the MEGT eruption, volcanic activity was fed by a new batch of less differentiated (trachyte-latite) magma that was slightly less enriched in radiogenic Sr. The geochemical and Sr–Nd-isotopic variations through time reflect the upward flux of isotopically distinct magma batches, variably contaminated byHercynian crust at 8–12 km depth. The deep-sourced latitic to trachytic magmas stalled at shallow depths (4–6 km depth), differentiated to phonolite through crystal fractionation and assimilation of a feldspar-rich mush, or ascended directly to the surface and erupted.
    Description: Published
    Description: 1035
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: 4V. Processi pre-eruttivi
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Ischia volcano ; Magmatic plumbing system ; Radiogenic isotopes ; Geothermometry ; Feldspar assimilation ; Caldera collapse
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...