ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 1999-02-12
    Beschreibung: Glucose metabolism in glycolysis and in mitochondria is pivotal to glucose-induced insulin secretion from pancreatic beta cells. One or more factors derived from glycolysis other than pyruvate appear to be required for the generation of mitochondrial signals that lead to insulin secretion. The electrons of the glycolysis-derived reduced form of nicotinamide adenine dinucleotide (NADH) are transferred to mitochondria through the NADH shuttle system. By abolishing the NADH shuttle function, glucose-induced increases in NADH autofluorescence, mitochondrial membrane potential, and adenosine triphosphate content were reduced and glucose-induced insulin secretion was abrogated. The NADH shuttle evidently couples glycolysis with activation of mitochondrial energy metabolism to trigger insulin secretion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eto, K -- Tsubamoto, Y -- Terauchi, Y -- Sugiyama, T -- Kishimoto, T -- Takahashi, N -- Yamauchi, N -- Kubota, N -- Murayama, S -- Aizawa, T -- Akanuma, Y -- Aizawa, S -- Kasai, H -- Yazaki, Y -- Kadowaki, T -- New York, N.Y. -- Science. 1999 Feb 12;283(5404):981-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan. Tokyo〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9974390" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Aminooxyacetic Acid/pharmacology ; Animals ; Aspartate Aminotransferases/antagonists & inhibitors ; Calcium/metabolism ; Citric Acid Cycle ; Enzyme Inhibitors/pharmacology ; Female ; Gene Targeting ; Glucose/metabolism/*pharmacology ; Glycerolphosphate Dehydrogenase/genetics/metabolism ; Glycolysis ; Insulin/*secretion ; Islets of Langerhans/metabolism/*secretion ; Male ; Membrane Potentials ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mitochondria/*metabolism ; Models, Biological ; Molecular Sequence Data ; NAD/*metabolism ; Pyruvic Acid/metabolism
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2009-01-20
    Beschreibung: The computational power of single neurons is greatly enhanced by active dendritic conductances that have a large influence on their spike activity. In cortical output neurons such as the large pyramidal cells of layer 5 (L5), activation of apical dendritic calcium channels leads to plateau potentials that increase the gain of the input/output function and switch the cell to burst-firing mode. The apical dendrites are innervated by local excitatory and inhibitory inputs as well as thalamic and corticocortical projections, which makes it a formidable task to predict how these inputs influence active dendritic properties in vivo. Here we investigate activity in populations of L5 pyramidal dendrites of the somatosensory cortex in awake and anaesthetized rats following sensory stimulation using a new fibre-optic method for recording dendritic calcium changes. We show that the strength of sensory stimulation is encoded in the combined dendritic calcium response of a local population of L5 pyramidal cells in a graded manner. The slope of the stimulus-response function was under the control of a particular subset of inhibitory neurons activated by synaptic inputs predominantly in L5. Recordings from single apical tuft dendrites in vitro showed that activity in L5 pyramidal neurons disynaptically coupled via interneurons directly blocks the initiation of dendritic calcium spikes in neighbouring pyramidal neurons. The results constitute a functional description of a cortical microcircuit in awake animals that relies on the active properties of L5 pyramidal dendrites and their very high sensitivity to inhibition. The microcircuit is organized so that local populations of apical dendrites can adaptively encode bottom-up sensory stimuli linearly across their full dynamic range.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murayama, Masanori -- Perez-Garci, Enrique -- Nevian, Thomas -- Bock, Tobias -- Senn, Walter -- Larkum, Matthew E -- England -- Nature. 2009 Feb 26;457(7233):1137-41. doi: 10.1038/nature07663. Epub 2009 Jan 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Physiologisches Institut, Universitat Bern, Buhlplatz 5, CH-3012 Bern, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19151696" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Anesthesia ; Animals ; Calcium/metabolism ; Dendrites/*physiology ; Electric Stimulation ; Excitatory Postsynaptic Potentials/physiology ; Female ; Interneurons/*physiology ; Models, Neurological ; Rats ; Rats, Wistar ; Somatosensory Cortex/*cytology/*physiology ; Wakefulness/physiology
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2012-03-01
    Beschreibung: Interhemispheric inhibition is thought to mediate cortical rivalry between the two hemispheres through callosal input. The long-lasting form of this inhibition is believed to operate via gamma-aminobutyric acid type B (GABA(B)) receptors, but the process is poorly understood at the cellular level. We found that the firing of layer 5 pyramidal neurons in rat somatosensory cortex due to contralateral sensory stimulation was inhibited for hundreds of milliseconds when paired with ipsilateral stimulation. The inhibition acted directly on apical dendrites via layer 1 interneurons but was silent in the absence of pyramidal cell firing, relying on metabotropic inhibition of active dendritic currents recruited during neuronal activity. The results not only reveal the microcircuitry underlying interhemispheric inhibition but also demonstrate the importance of active dendritic properties for cortical output.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Palmer, Lucy M -- Schulz, Jan M -- Murphy, Sean C -- Ledergerber, Debora -- Murayama, Masanori -- Larkum, Matthew E -- New York, N.Y. -- Science. 2012 Feb 24;335(6071):989-93. doi: 10.1126/science.1217276.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Physiologisches Institut, Universitat Bern, Buhlplatz 5, CH-3012 Bern, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22363012" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Action Potentials ; Animals ; Calcium/metabolism ; Cerebrum/*physiology ; Corpus Callosum/physiology ; Dendrites/*physiology ; Electric Stimulation ; Hindlimb ; Interneurons/physiology ; *Neural Inhibition ; Patch-Clamp Techniques ; Pyramidal Cells/*physiology ; Rats ; Rats, Wistar ; Receptors, GABA-B/*metabolism ; Somatosensory Cortex/cytology/*physiology
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...