ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Bleaching Agents  (1)
  • Calcium/metabolism/pharmacology  (1)
  • 1
    Publication Date: 2012-01-17
    Description: Hair cells of the inner ear are not normally replaced during an animal's life, and must continually renew components of their various organelles. Among these are the stereocilia, each with a core of several hundred actin filaments that arise from their apical surfaces and that bear the mechanotransduction apparatus at their tips. Actin turnover in stereocilia has previously been studied by transfecting neonatal rat hair cells in culture with a beta-actin-GFP fusion, and evidence was found that actin is replaced, from the top down, in 2-3 days. Overexpression of the actin-binding protein espin causes elongation of stereocilia within 12-24 hours, also suggesting rapid regulation of stereocilia lengths. Similarly, the mechanosensory 'tip links' are replaced in 5-10 hours after cleavage in chicken and mammalian hair cells. In contrast, turnover in chick stereocilia in vivo is much slower. It might be that only certain components of stereocilia turn over quickly, that rapid turnover occurs only in neonatal animals, only in culture, or only in response to a challenge like breakage or actin overexpression. Here we quantify protein turnover by feeding animals with a (15)N-labelled precursor amino acid and using multi-isotope imaging mass spectrometry to measure appearance of new protein. Surprisingly, in adult frogs and mice and in neonatal mice, in vivo and in vitro, the stereocilia were remarkably stable, incorporating newly synthesized protein at 〈10% per day. Only stereocilia tips had rapid turnover and no treadmilling was observed. Other methods confirmed this: in hair cells expressing beta-actin-GFP we bleached fiducial lines across hair bundles, but they did not move in 6 days. When we stopped expression of beta- or gamma-actin with tamoxifen-inducible recombination, neither actin isoform left the stereocilia, except at the tips. Thus, rapid turnover in stereocilia occurs only at the tips and not by a treadmilling process.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3267870/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3267870/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Duan-Sun -- Piazza, Valeria -- Perrin, Benjamin J -- Rzadzinska, Agnieszka K -- Poczatek, J Collin -- Wang, Mei -- Prosser, Haydn M -- Ervasti, James M -- Corey, David P -- Lechene, Claude P -- 2P41RR0112553-12/RR/NCRR NIH HHS/ -- F32DC009539/DC/NIDCD NIH HHS/ -- P41EB001974/EB/NIBIB NIH HHS/ -- P41RR14579/RR/NCRR NIH HHS/ -- R01 AR042423/AR/NIAMS NIH HHS/ -- R01 AR042423-08/AR/NIAMS NIH HHS/ -- R01 AR049899/AR/NIAMS NIH HHS/ -- R01 DC000033/DC/NIDCD NIH HHS/ -- R01 DC002281/DC/NIDCD NIH HHS/ -- R01AR049899/AR/NIAMS NIH HHS/ -- R01D K58762/PHS HHS/ -- R01DC00033/DC/NIDCD NIH HHS/ -- R01DC02281/DC/NIDCD NIH HHS/ -- R01DC03463/DC/NIDCD NIH HHS/ -- R01DC04179/DC/NIDCD NIH HHS/ -- R01EY12963/EY/NEI NIH HHS/ -- R01GM47214/GM/NIGMS NIH HHS/ -- R37DK39773/DK/NIDDK NIH HHS/ -- WT079643/Wellcome Trust/United Kingdom -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Jan 15;481(7382):520-4. doi: 10.1038/nature10745.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Harvard Medical School and Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22246323" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; Animals, Newborn ; Bleaching Agents ; Chickens ; Epithelium/drug effects/metabolism ; Fiducial Markers ; Hair Cells, Auditory, Inner/*cytology ; Homologous Recombination/drug effects ; Mass Spectrometry/*methods ; Mice ; Mice, Inbred C57BL ; Proteins/*metabolism ; Rana catesbeiana ; Stereocilia/*metabolism ; Tamoxifen/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-11-09
    Description: Hearing and balance use hair cells in the inner ear to transform mechanical stimuli into electrical signals. Mechanical force from sound waves or head movements is conveyed to hair-cell transduction channels by tip links, fine filaments formed by two atypical cadherins known as protocadherin 15 and cadherin 23 (refs 4, 5). These two proteins are involved in inherited deafness and feature long extracellular domains that interact tip-to-tip in a Ca(2+)-dependent manner. However, the molecular architecture of this complex is unknown. Here we combine crystallography, molecular dynamics simulations and binding experiments to characterize the protocadherin 15-cadherin 23 bond. We find a unique cadherin interaction mechanism, in which the two most amino-terminal cadherin repeats (extracellular cadherin repeats 1 and 2) of each protein interact to form an overlapped, antiparallel heterodimer. Simulations predict that this tip-link bond is mechanically strong enough to resist forces in hair cells. In addition, the complex is shown to become unstable in response to Ca(2+) removal owing to increased flexure of Ca(2+)-free cadherin repeats. Finally, we use structures and biochemical measurements to study the molecular mechanisms by which deafness mutations disrupt tip-link function. Overall, our results shed light on the molecular mechanics of hair-cell sensory transduction and on new interaction mechanisms for cadherins, a large protein family implicated in tissue and organ morphogenesis, neural connectivity and cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518760/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518760/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sotomayor, Marcos -- Weihofen, Wilhelm A -- Gaudet, Rachelle -- Corey, David P -- R01 DC002281/DC/NIDCD NIH HHS/ -- R01 DC02281/DC/NIDCD NIH HHS/ -- RC2GM093307/GM/NIGMS NIH HHS/ -- RR-15301/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Dec 6;492(7427):128-32. doi: 10.1038/nature11590. Epub 2012 Nov 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23135401" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cadherins/*chemistry/genetics/*metabolism ; Calcium/metabolism/pharmacology ; Chromatography, Gel ; Crystallography, X-Ray ; Deafness/genetics ; Ear, Inner/cytology/*physiology ; Mechanotransduction, Cellular/*physiology ; Mice ; Models, Molecular ; Molecular Dynamics Simulation ; Mutagenesis, Site-Directed ; Mutation/genetics ; Protein Binding/drug effects ; Protein Multimerization/drug effects ; Protein Precursors/*chemistry/genetics/*metabolism ; Repetitive Sequences, Amino Acid
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...