ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 164 (1995), S. 271-279 
    ISSN: 1432-072X
    Keywords: Key words Dissimilatory sulfate reduction ; Glycolate Incomplete oxidation ; Desulforubidin ; Glycolate ; dehydrogenase ; CO dehydrogenase ; Menaquinone
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Sulfate-dependent degradation of glycolate was studied with a new sulfate-reducing bacterium, strain PerGlyS, enriched and isolated from marine anoxic sediment. Cells were gram-negative, motile rods with a DNA G+C content of 56.2 ± 0.2 mol%. Cytochromes of the b- and c-type and menaquinone-5 were detected. A sulfite reductase of the desulforubidin-type was identified by characteristic absorption maxima at 279, 396, 545, and 580 nm. The purified desulforubidin is a heteropolymer consisting of three subunits with molecular masses of 42.5 (α), 38.5 (β), and 13 kDa (γ). Strain PerGlyS oxidized glycolate completely to CO2. Lactate, malate, and fumarate were oxidized incompletely, yielding more sulfide and less acetate than expected for typical incomplete oxidation of these substrates. Part of the acetate residues formed was oxidized through the CO-dehydrogenase pathway. The biochemistry of glycolate degradation was investigated in cell-free extracts. A membrane-bound glycolate dehydrogenase, but no glyoxylate-metabolizing enzyme activity was detected; the further degradation pathway is unclear.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...