ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2234
    Keywords: C6H6 ; C6H6O ; Electronic excitation ; ab initio ; CASPT2 ; Oscillator strength ; Rydberg states
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Summary The valence excited states and the 3s, 3p, and 3d (united atom) Rydberg states of benzene and phenol have been obtained by the CASPT2 method, which computes a second-order perturbation correction to complete active space self-consistent field (CASSCF) energies. All non-zero dipole oscillator strengths are also computed, at the CASSCF level. For benzene, 16 singlet and 16 triplet states with excitation energies up to ca. 7.86 eV (63 400 cm–1) are obtained. Of these, 12 singlet and three triplet energies are experimentally known well enough to allow meaningful comparison. The average error is around 0.1 eV. The highest of these singlet states (21 E2g) is the highest valence ππ* state predicted by elementary π-electron theory. Its energy is then considerably lower than has been suggested from laser flash experiments, but in perfect agreement with a reinterpretation of that experiment. For phenol, 27 singlet states are obtained, in the range 4.53–7.84 eV (63 300 cm−1). Only the lowest has a well-known experimental energy, which agrees with the computed result within 0.03 eV. The ionization energy is in error by 0.05 eV.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0040-5744
    Keywords: Key words: C6H6 ; C6H6O ; Electronic excitation ; ab initio ; CASPT2 ; Oscillator strength ; Rydberg states
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Summary.  The valence excited states and the 3s, 3p, and 3d (united atom) Rydberg states of benzene and phenol have been obtained by the CASPT2 method, which computes a second-order perturbation correction to complete active space self-consistent field (CASSCF) energies. All non-zero dipole oscillator strengths are also computed, at the CASSCF level. For benzene, 16 singlet and 16 triplet states with excitation energies up to ca. 7.86 eV (63 400 cm-1) are obtained. Of these, 12 singlet and three triplet energies are experimentally known well enough to allow meaningful comparison. The average error is around 0.1 eV. The highest of these singlet states (21E2 g) is the highest valence ππ* state predicted by elementary π-electron theory. Its energy is then considerably lower than has been suggested from laser flash experiments, but in perfect agreement with a reinterpretation of that experiment. For phenol, 27 singlet states are obtained, in the range 4.53–7.84 eV (63 300 cm-1). Only the lowest has a well-known experimental energy, which agrees with the computed result within 0.03 eV. The ionization energy is in error by 0.05 eV.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...