Skip to main content
Log in

A CASPT2 study of the valence and lowest Rydberg electronic states of benzene and phenol

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

The valence excited states and the 3s, 3p, and 3d (united atom) Rydberg states of benzene and phenol have been obtained by the CASPT2 method, which computes a second-order perturbation correction to complete active space self-consistent field (CASSCF) energies. All non-zero dipole oscillator strengths are also computed, at the CASSCF level. For benzene, 16 singlet and 16 triplet states with excitation energies up to ca. 7.86 eV (63 400 cm–1) are obtained. Of these, 12 singlet and three triplet energies are experimentally known well enough to allow meaningful comparison. The average error is around 0.1 eV. The highest of these singlet states (21 E2g) is the highest valence ππ* state predicted by elementary π-electron theory. Its energy is then considerably lower than has been suggested from laser flash experiments, but in perfect agreement with a reinterpretation of that experiment. For phenol, 27 singlet states are obtained, in the range 4.53–7.84 eV (63 300 cm−1). Only the lowest has a well-known experimental energy, which agrees with the computed result within 0.03 eV. The ionization energy is in error by 0.05 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Matos JMO, Roos BO, Malmqvist P-Å (1987) J Chem Phys 86:1458

    Google Scholar 

  2. Palmer MH, Walker IC (1989) Chem Phys 133:113

    Google Scholar 

  3. Kitao O, Nakatsuji H (1987) J Chem Phys 87:1169

    Google Scholar 

  4. Roos BO, Andersson K, Fülscher MP (1992) Chem Phys Lett 192:5

    Google Scholar 

  5. Andersson K, Blomberg MRA, Fülscher MP, KellÖ V, Lindh R, Malmqvist P-Å, Noga J, Olsen J, Roos BO, Sadlej AJ, Siegbahn PEM, Urban M (1992) Widmark P-O MOLCAS Version 2 User's Guide. Dept. of Theor. Chem., Chem. Center, Univ. of Lund, Lund

    Google Scholar 

  6. Roos BO, Taylor PR, Siegbahn PEM (1980) Chem Phys 48:157

    Google Scholar 

  7. Roos BO (1980) Int J Quantum Chem S14:175

    Google Scholar 

  8. Fülscher MP, Andersson K, Roos BO (1992) J Phys Chem 96:9204

    Google Scholar 

  9. Serrano-Andrés L, Merchán M, Nebot-Gil I, Lindh R, Roos BO (1993) J Chem Phys 98:3151

    Google Scholar 

  10. Serrano-Andrés L, Merchán M, Nebot-Gil I, Roos BO, Fülscher MP (1993) J Am Chem Soc 115:6184

    Google Scholar 

  11. Wolinski K, Pulay P (1989) J Chem Phys 90:3647

    Google Scholar 

  12. Andersson K, Malmqvist P-Å, Roos BO, Sadlej AJ, Wolinski K (1990) J Phys Chem 94:5483

    Google Scholar 

  13. Andersson K, Malmqvist P-Å, Roos BO (1992) J Chem Phys 96:1218

    Google Scholar 

  14. Roos BO, Fülscher MP, Malmqvist P-Å, Serrano-Andrés PL, Merchán M (1994) Theoretical studies of the electronic spectra of organic molecules. In: Langhoff SR (ed) Quantum mechanical electron structure calculations with chemical accuracy. Kluwer, Dordrecht

    Google Scholar 

  15. Tamagawa K, Iijima T, Kumura M (1976) J Mol Struct 30:243

    Google Scholar 

  16. Stoichev BP (1954) Can J Phys 32:339

    Google Scholar 

  17. Larsen NW (1979) J Mol Struct 51:175

    Google Scholar 

  18. Bock CW, Trachtman M, George P (1986) J Mol Struct (Theochem) 139:63

    Google Scholar 

  19. Lindh R, Roos BO (1989) Int J Quantum Chem 53:813

    Google Scholar 

  20. Widmark P-O, Malmqvist P-Å, Roos BO (1990) Theor Chim Acta 77:291

    Google Scholar 

  21. Almlöf J, Taylor PR (1987) J Chem Phys 86:4070

    Google Scholar 

  22. Lorentzson J, Malmqvist P-Å, Roos BO (1994) to be published

  23. Mulliken RS (1955) J Chem Phys 11:1997

    Google Scholar 

  24. Hiraya A, Shobatake K (1991) J Chem Phys 94:7700

    Google Scholar 

  25. Lassettre EN, Skerbele A, Dillon MA, Roos KJ (1967) J Chem Phys 48:5066

    Google Scholar 

  26. Johnson PM, Korenowski GM (1983) Chem Phys Lett 97:53

    Google Scholar 

  27. Wilkinson, PG (1956) Can J Phys 34:596

    Google Scholar 

  28. Nakashima N, Sumitani M, Ohmine I, Yoshihara K (1980) J Chem Phys 72:2226

    Google Scholar 

  29. Nakashima N, Inoue H, Sumitani M, Yoshihara K (1980) J Chem Phys 73:5620

    Google Scholar 

  30. Whetten RL, Fu K-J, Grant ER (1983) J Chem Phys 79:2620

    Google Scholar 

  31. Whetten RL, Grubb SG, Otis CE, Albrecht AC, Grant ER (1985) J Chem Phys 82:1115

    Google Scholar 

  32. Grubb SG, Whetten RL, Albrecht AC, Grant ER (1984) Chem Phys Lett 108:420

    Google Scholar 

  33. Grubb SG, Otis CE, Whetten RL, Grant ER, Albrecht AC (1985) J Chem Phys 82:1135

    Google Scholar 

  34. Johnson PM (1976) J Chem Phys 64:4143

    Google Scholar 

  35. Doering JP (1969) J Chem Phys 51:2866

    Google Scholar 

  36. Minaev BF, Knuts S, Ågren H, Vahtras O (1993) Chem Phys 175:245

    Google Scholar 

  37. Petruska J (1961) J Chem Phys 34:1120

    Google Scholar 

  38. Martinez III SJ, Alfano JC, Levy DH (1992) J Mol Spectrosc 152:80

    Google Scholar 

  39. Kimura K, Nagakura S (1965) Mol Phys 9:117

    Google Scholar 

  40. Rancurel P, Huron B, Praud L, Malrieu JP, Berthier G (1976) J Mol Spectros 60:259

    Google Scholar 

  41. Hay PJ, Shavitt I (1973) Chem Phys Lett 22:33

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorentzon, J., Malmqvist, PÅ., Fülscher, M. et al. A CASPT2 study of the valence and lowest Rydberg electronic states of benzene and phenol. Theoret. Chim. Acta 91, 91–108 (1995). https://doi.org/10.1007/BF01113865

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01113865

Key words

Navigation