ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0173-0835
    Keywords: Bacterial genome analysis ; Genomic subtractive hybridization ; Physical map ; Pulsed field gel electrophoresis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: A comprehensive analysis of the differences between the genomes of two closely related bacterial strains should give insight into the molecular basis of their individual phenotypic and genotypic characteristics. Here we present an integrative approach including two different strategies for the thorough investigation of genomic divergence. We have combined two techniques including genomic subtractive hybridization and comparative genome mapping by pulsed field gel electrophoresis (PFGE) techniques. The subtractive method for which a protocol is given herein results in the production of a library of specific DNA sequence tags present only in one strain, while the construction of macrorestriction maps of the bacterial chromosomes yields data about the overall genome organization and the arrangement and distance of gene loci. Comparison of the physical and genetic maps and determination of the map positions of the strain-specific DNA sequences reveals gross chromosomal modifications, insertions or deletions of additional genetic material, and transpositional events. The further investigation of the strain-specific regions yields information about the nature and origin of the acquired DNA and their influence on the evolution of the individual bacterial genome. The two methods were applied to differential genome analysis of clonal divergence in Pseudomonas aeruginosa choosing two clone C isolates from diverse habitats.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0006-3592
    Keywords: lignocellulose ; biomass ; lignin degradation ; enzymatic hydrolysis ; furfural ; Aspergillus niger fermentation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The wet oxidation process of wheat straw has been studied as a pretreatment method to attain our main goal: To break down cellulose to glucose enzymatic, and secondly, to dissolve hemicellulose (e.g., for fermentation) without producing microbial inhibitors. Wet oxidation combined with base addition readily oxidizes lignin from wheat straw facilitating the polysaccharides for enzymatic hydrolysis. By using a specially constructed autoclave system, the wet oxidation process was optimized with respect to both reaction time and temperature. The best conditions (20 g/L straw, 170°C, 5 to 10 min) gave about 85% w/w yield of converting cellulose to glucose. The process water, containing dissolved hemicellulose and carboxylic acids, has proven to be a direct nutrient source for the fungus Aspergillus niger producing exo-β-xylosidase. Furfural and hydroxymethyl-furfural, known inhibitors of microbial growth when other pretreatment systems have been applied, were not observed following the wet oxidation treatment. © 1996 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 55 (1997), S. 831-840 
    ISSN: 0006-3592
    Keywords: isotopomer mapping matrix ; isotopomer modeling ; metabolic flux analysis ; 13C NMR ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Within the last decades NMR spectroscopy has undergone tremendous development and has become a powerful analytical tool for the investigation of intracellular flux distributions in biochemical networks using 13C-labeled substrates. Not only are the experiments much easier to conduct than experiments employing radioactive tracer elements, but NMR spectroscopy also provides additional information on the labeling pattern of the metabolites. Whereas the maximum amount of information obtainable with 14C-labeled substrates is the fractional enrichment in the individual carbon atom positions, NMR spectroscopy can also provide information on the degree of labeling at neighboring carbon atom positions by analyzing multiplet patterns in NMR spectra or using 2-dimensional NMR spectra. It is possible to quantify the mole fractions of molecules that show a specific labeling pattern, i.e., information of the isotopomer distribution in metabolite pools can be obtained. The isotopomer distribution is the maximum amount of information that in theory can be obtained from 13C-tracer studies. The wealth of information contained in NMR spectra frequently leads to overdetermined algebraic systems. Consequently, fluxes must be estimated by nonlinear least squares analysis, in which experimental labeling data is compared with simulated steady state isotopomer distributions. Hence, mathematical models are required to compute the steady state isotopomer distribution as a function of a given set of steady state fluxes. Because 2n possible labeling patterns exist in a molecule of n carbon atoms, and each pattern corresponds to a separate state in the isotopomer model, these models are inherently complex. Model complexity, so far, has restricted usage of isotopomer information to relatively small metabolic networks. A general methodology for the formulation of isotopomer models is described. The model complexity of isotopomer models is reduced to that of classical metabolic models by expressing the 2n isotopomer mass balances of a metabolite pool in a single matrix equation. Using this approach an isotopomer model has been implemented that describes label distribution in primary carbon metabolism, i.e., in a metabolic network including the Embden-Meyerhof-Parnas and pentose phosphate pathway, the tricarboxylic acid cycle, and selected anaplerotic reaction sequences. The model calculates the steady state label distribution in all metabolite pools as a function of the steady state fluxes and is applied to demonstrate the effect of selected anaplerotic fluxes on the labeling pattern of the pathway intermediates. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55:831-840, 1997.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 285-291 
    ISSN: 0006-3592
    Keywords: Klebsiella pneumoniae 62-1 ; isochorismate hydroxymutase (E.C. 5.4.99.6) ; affinity immobilization ; isochorismate excretion ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Two methods are described for the preparation of enantiomerically pure (+)-trans-isochorismic acid, an important metabolite of the postchorismate pathway. Both methods can be employed to prepare isotopically labeled isochorismic acid. One of the two methods is suitable to prepare bulk quantities of isochorismic acid using a recombinant strain of Klebsiella pneumoniae 62-1. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 46 (1995), S. 497-502 
    ISSN: 0006-3592
    Keywords: poly-β-hydroxybutyrate ; molcular weight distribution ; Alcaligens eutrophus ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The effect of magnesium and phosphate limitation on the molecular weight distribution of poly-β-hydroxybutyrate (PHB) in Alcaligens europhus in cotinuons culture has been stuied. Conditions of nitrogen limitation both with glucose excess (above ca. 20 g/L) and without excess were investigated Under N-limitation and glucose excess, Mw decreases when the magnesium content is decreased below 50% (19.7 mg/L) of the basal medium content; this also results in a broadenng of molecular weight distribution (Mw/Mn) from 2 to 5 and a decrease in Mw fron 2 × 106 to 0.9 × 106. Below 20% of the basal content of magnesium (7.9 mg/L) these two trends were reversed. This behaviour was not observed in the absence of glucose excess, phshate had virtually no effect on PHB Mw or its distribution, whereas wih no (or little) glucose excess Mw of the PHB decreased with phosphate concentrations below 50% of the basal level (0.705 g/L). Hence, in continuous or fed-batch cultures, in addition to nitrogen limitation to alklow for PHB accumulation, it is necesary to control both the addition of glucose (no excess) and also to maintain magnesium limitation (ca. 25% of basal medium level, 9.9 mg/L) and phosphate above 50% of he basal level (0.705 g/L). Thus, when broadening of molecular weight destribution (increase in Mw/Mn) is observed at the end of fed-batch culture it is probably caused by phosphate limitation and/or glucose excess. © 1995 John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 49 (1996), S. 229-246 
    ISSN: 0006-3592
    Keywords: anaerobic upflow reactors ; granulation ; sludge formation ; methanogen bacteria ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The state of the art for upflow anaerobic sludge blanket (UASB) reactors is discussed, focusing on the microbiology of immobilized anaerobic bacteria and the mechanism of granule formation. The development of granular sludge is the key factor for successful operation of the UASB reactors. Criteria for determining if granular sludge has developed in a UASB reactor is given based on the densities and diameters of the granular sludge. The shape and composition of granular sludge can vary significantly. Granules typically have a spherical form with a diameter from 0.14 to 5 mm. The inorganic mineral content varies from 10 to 90% of the dry weight of the granules, depending on the wastewater composition etc. The main components of the ash are calcium, potassium, and iron. The extracellular polymers in the granular sludge are important for the structure and maintenance of granules, while the inorganic composition seems to be of less importance. The extracellular polymer content varies between 0.6 and 20% of the volatile suspended solids and consists mainly of protein and polysaccharides. Both Methanosaeta spp. (formerly Methanothrix) and Methanosarcina spp. have been identified as important aceticlastic methanogens for the initial granulation and development of granular sludge. Immunological methods have been used to identify other methanogens in the granules. The results have showed that, besides the aceticlastic methanogens Methanosaeta spp. and Methanosarcina spp., hydrogen and formate utilizing bacteria are also present, e.g., Methanobacterium formicicum, Methanobacterium thermoautotrophicum, and Methanobrevibacter spp. Microcolonies of syntrophic bacteria are often observed in the granules, and the significant electron transfer in these microcolonies occurs through interspecies hydrogen transfer. The internal organization of the various groups of bacteria in the granules depends on the wastewater composition and the dominating metabolic pathways in the granules. Internal organization is observed in granules where such an arrangement is beneficial for an optimal degradation of the wastewater. A four-step model is given for the initial development of granular sludge. © 1996 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0006-3592
    Keywords: metabolic flux analysis ; 13C tracer experiments ; fractional enrichment ; NADH ; NADPH ; pentose phosphate pathway ; Aspergillus oryzae ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Conventional metabolic flux analysis uses the information gained from determination of measurable fluxes and a steady-state assumption for intracellular metabolites to calculate the metabolic fluxes in a given metabolic network. The determination of intracellular fluxes depends heavily on the correctness of the assumed stoichiometry including the presence of all reactions with a noticeable impact on the model metabolite balances. Determination of fluxes in complex metabolic networks often requires the inclusion of NADH and NADPH balances, which are subject to controversial debate. Transhydrogenation reactions that transfer reduction equivalents from NADH to NADPH or vice versa can usually not be included in the stoichiometric model, because they result in singularities in the stoichiometric matrix. However, it is the NADPH balance that, to a large extent, determines the calculated flux through the pentose phosphate pathway. Hence, wrong assumptions on the presence or activity of transhydrogenation reactions will result in wrong estimations of the intracellular flux distribution. Using 13C tracer experiments and NMR analysis, flux analysis can be performed on the basis of only well established stoichiometric equations and measurements of the labeling state of intracellular metabolites. Neither NADH/NADPH balancing nor assumptions on energy yields need to be included to determine the intracellular fluxes. Because metabolite balancing methods and the use of 13C labeling measurements are two different approaches to the determination of intracellular fluxes, both methods can be used to verify each other or to discuss the origin and significance of deviations in the results. Flux analysis based entirely on metabolite balancing and flux analysis, including labeling information, have been performed independently for a wild-type strain of Aspergillus oryzae producing α-amylase. Two different nitrogen sources, NH4+ and NO3-, have been used to investigate the influence of the NADPH requirements on the intracellular flux distribution. The two different approaches to the calculation of fluxes are compared and deviations in the results are discussed. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:254-257, 1998.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 50 (1996), S. 617-626 
    ISSN: 0006-3592
    Keywords: aqueous two-phase systems ; protein concentration ; physico-chemical properties ; phase saturation correlations ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The effect of protein concentration in partitioning in PEG/salt aqueous two-phase systems has been investigated. PEG 4000/phosphate systems in the presence of 0% w/w and 8.8% w/w NaCl have been evaluated using amyloglucosidase, subtilisin, and trypsin inhibitor. Also, a PEG 4000/phosphate system with 3% w/w NaCl was used for α-amylase. The concentration of the protein in each of the phases affected its partition behavior. The pattern for the individual proteins was dependent on their physicochemical properties. In the top phase, maximum protein concentration was determined mainly by a steric exclusion effect of PEG, and hydrophobic interaction between PEG and proteins. In the bottom phase, maximum concentration was determined mainly by a salting-out effect of the salts present. As the ionic strength was increased in the systems the concentration in the top phase increased for all proteins. In the bottom phase an increase in ionic strength increased the salting-out effect. Amyloglucosidase had a very low maximum concentration in the PEG-rich top phase which was probably due to its large size (steric exclusion) and low hydrophobicity, and a high concentration in the salt-rich bottom phase due to its high hydrophilicity. In the case of subtilisin and trypsin inhibitor, their high concentrations in the top phase were due to their hydrophobic nature (hydrophobic interaction with PEG) and small size (negligible steric exclusion). The maximum concentration in the bottom phase for trypsin inhibitor was lower than that of subtilisin which was probably due to its higher hydrophobicity and, hence, a stronger salting-out effect. The protein concentration in each of the two phases was correlated with a “saturation”-type equation. The partition coefficient could be satisfactorily predicted, as a function of the overall protein concentration, by the ratio between the “saturation” equations of the two individual phases. Better correlations were obtained when an empirical sigmoidal Boltzmann equation was fitted to the data, since in virtually all cases the partition coefficient is constant at low protein concentration (true partitioning) and changes to a different constant value at a high overall protein concentration. © 1996 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0173-0835
    Keywords: Detectability improvements ; Isotachophoretic preconcentration ; Frequency doubled argon ion laser ; Hydrodynamic backpressure programming ; Capillary zone electrophoresis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Due to the small path length and low injection volume the concentration limit of detection is comparatively poor in capillary electrophoresis (CZE) with UV detection. This limitation can be overcome by means of preconcentration methods and/or improved detection techniques. This paper describes a strategy where isotachophoresis (ITP) is used to preconcentrate a new cholinesterase inhibitor (NXX-066) prior to a capillary zone electrophoresis analysis in the same single capillary. A hydrodynamic backpressure is used to prevent the analyte from migrating out of the capillary. Laser-induced fluorescence (LIF) is used to further increase the detectability. The total gain in detectability with ITP-CZE-LIF compared to CZE-UV was at least 5500-fold, and it is possible to determine NXX-066 at the 1 nM level. The ITP-CZE method was further evaluated for two β-blockers; the mean coefficient of variation of the peak areas was 3.4% and the linearity of the calibration plots was satisfying.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...