ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1979-08-17
    Description: Mouse spinal neurons grown in tissue culture were used to study the membrane effects of the benzodiazepine flurazepam and the naturally occurring purine nucleoside inosine, which competes for benzodiazepine receptor sites in the central nervous system. Application of inosine elicited two types of transmitter-like membrane effects: a rapidly desensitizing excitatory response and a nondesensitizing inhibitory response. Flurazepam produced a similar excitatory response which showed cross-desensitization with the purine excitation. Flurazepam also blocked the inhibitory inosine response. The results provide electrophysiological evidence that an endogenous purine can activate two different conductances on spinal neurons and that flurazepam can activate one of the conductances and antagonize the other.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉MacDonald, J F -- Barker, J L -- Paul, S M -- Marangos, P J -- Skolnick, P -- New York, N.Y. -- Science. 1979 Aug 17;205(4407):715-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/37602" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Benzodiazepines/*metabolism ; Cells, Cultured ; Electric Conductivity ; Flurazepam/antagonists & inhibitors ; Inosine/*metabolism/pharmacology ; Ligands ; Mice ; Neurotransmitter Agents/metabolism ; Receptors, Drug/*metabolism ; Receptors, Neurotransmitter/metabolism ; Spinal Cord/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1981-04-17
    Description: Voltage-clamp recordings from mouse spinal neurons grown in culture were used to study the membrane current fluctuations induced by 12 substances structurally similar to gamma-aminobutyric acid (GABA). Fluctuation analysis provided estimates of the electrical properties of the elementary events underlying these responses. Estimates of the mean conductance of channels activated by all of the substances except glycine did not differ significantly from that estimated for GABA, whereas mean durations of agonist-activated channels all differed significantly from that found for GABA. The results indicate that all of the substances tested except glycine activate channels of similar conductance but of different durations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barker, J L -- Mathers, D A -- New York, N.Y. -- Science. 1981 Apr 17;212(4492):358-61.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6259733" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Membrane/drug effects ; Ion Channels/*drug effects ; Membrane Potentials/drug effects ; Mice ; Neurons/drug effects ; Receptors, Cell Surface/metabolism ; Receptors, GABA-A ; Spinal Nerves/*drug effects ; Structure-Activity Relationship ; Time Factors ; gamma-Aminobutyric Acid/*analogs & derivatives/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1980-01-11
    Description: Stereoisomers of the barbiturate anesthetic pentobarbital were applied to mouse spinal neurons growing in tissue culture. Intracellular recordings of neuronal membrane properties revealed that the (+) and (-) isomers caused direct changes in membrane potential and conductance on some but not all of the cells tested. The action of the (+) isomer was predominantly excitatory, whereas the (-) isomer produced predominantly inhibitory responses. The (-) isomer was considerably more effective in potentiating inhibitory responses to the transmitter gamma-aminobutyric acid. The results show that pentobarbital has multiple effects on neuronal excitability and demonstrate the presence of stereospecific sites of barbiturate action on central neurons.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, L Y -- Barker, J L -- New York, N.Y. -- Science. 1980 Jan 11;207(4427):195-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7350656" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials/drug effects ; Animals ; Cells, Cultured ; Dose-Response Relationship, Drug ; Electric Conductivity ; Membrane Potentials/drug effects ; Mice ; Neural Inhibition/drug effects ; Neurons/*drug effects ; Pentobarbital/*pharmacology ; Spinal Cord/embryology ; Stereoisomerism ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...