ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Bacterial Outer Membrane Proteins/*chemistry/*metabolism  (1)
  • Brachypodium/genetics  (1)
  • 2010-2014  (2)
  • 1
    Publication Date: 2014-07-06
    Description: Lipopolysaccharide (LPS) is essential for most Gram-negative bacteria and has crucial roles in protection of the bacteria from harsh environments and toxic compounds, including antibiotics. Seven LPS transport proteins (that is, LptA-LptG) form a trans-envelope protein complex responsible for the transport of LPS from the inner membrane to the outer membrane, the mechanism for which is poorly understood. Here we report the first crystal structure of the unique integral membrane LPS translocon LptD-LptE complex. LptD forms a novel 26-stranded beta-barrel, which is to our knowledge the largest beta-barrel reported so far. LptE adopts a roll-like structure located inside the barrel of LptD to form an unprecedented two-protein 'barrel and plug' architecture. The structure, molecular dynamics simulations and functional assays suggest that the hydrophilic O-antigen and the core oligosaccharide of the LPS may pass through the barrel and the lipid A of the LPS may be inserted into the outer leaflet of the outer membrane through a lateral opening between strands beta1 and beta26 of LptD. These findings not only help us to understand important aspects of bacterial outer membrane biogenesis, but also have significant potential for the development of novel drugs against multi-drug resistant pathogenic bacteria.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dong, Haohao -- Xiang, Quanju -- Gu, Yinghong -- Wang, Zhongshan -- Paterson, Neil G -- Stansfeld, Phillip J -- He, Chuan -- Zhang, Yizheng -- Wang, Wenjian -- Dong, Changjiang -- 083501/Z/07/Z/Wellcome Trust/United Kingdom -- England -- Nature. 2014 Jul 3;511(7507):52-6. doi: 10.1038/nature13464. Epub 2014 Jun 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK [2] Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK. ; 1] Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK [2] Department of Microbiology, College of Resource and Environment Science, Sichuan Agriculture University, Yaan 625000, China. ; Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK. ; 1] Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK [2] Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK [3] College of Life Sciences, Sichuan University, Chengdu 610065, China. ; Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK. ; Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK. ; 1] Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK [2] School of Electronics and Information, Wuhan Technical College of Communications, No.6 Huangjiahu West Road, Hongshan District, Wuhan, Hubei 430065, China. ; College of Life Sciences, Sichuan University, Chengdu 610065, China. ; Laboratory of Department of Surgery, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong 510080, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24990744" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Outer Membrane Proteins/*chemistry/*metabolism ; Cell Membrane/chemistry/metabolism ; Cell Wall/chemistry/metabolism ; Crystallography, X-Ray ; Lipopolysaccharides/chemistry/*metabolism ; Models, Molecular ; Multiprotein Complexes/*chemistry/*metabolism ; Protein Binding ; Protein Structure, Secondary ; Salmonella typhimurium/*chemistry/cytology ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-11-30
    Description: Bread wheat (Triticum aestivum) is a globally important crop, accounting for 20 per cent of the calories consumed by humans. Major efforts are underway worldwide to increase wheat production by extending genetic diversity and analysing key traits, and genomic resources can accelerate progress. But so far the very large size and polyploid complexity of the bread wheat genome have been substantial barriers to genome analysis. Here we report the sequencing of its large, 17-gigabase-pair, hexaploid genome using 454 pyrosequencing, and comparison of this with the sequences of diploid ancestral and progenitor genomes. We identified between 94,000 and 96,000 genes, and assigned two-thirds to the three component genomes (A, B and D) of hexaploid wheat. High-resolution synteny maps identified many small disruptions to conserved gene order. We show that the hexaploid genome is highly dynamic, with significant loss of gene family members on polyploidization and domestication, and an abundance of gene fragments. Several classes of genes involved in energy harvesting, metabolism and growth are among expanded gene families that could be associated with crop productivity. Our analyses, coupled with the identification of extensive genetic variation, provide a resource for accelerating gene discovery and improving this major crop.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510651/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510651/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brenchley, Rachel -- Spannagl, Manuel -- Pfeifer, Matthias -- Barker, Gary L A -- D'Amore, Rosalinda -- Allen, Alexandra M -- McKenzie, Neil -- Kramer, Melissa -- Kerhornou, Arnaud -- Bolser, Dan -- Kay, Suzanne -- Waite, Darren -- Trick, Martin -- Bancroft, Ian -- Gu, Yong -- Huo, Naxin -- Luo, Ming-Cheng -- Sehgal, Sunish -- Gill, Bikram -- Kianian, Sharyar -- Anderson, Olin -- Kersey, Paul -- Dvorak, Jan -- McCombie, W Richard -- Hall, Anthony -- Mayer, Klaus F X -- Edwards, Keith J -- Bevan, Michael W -- Hall, Neil -- B/J004588/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E004725/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/G012865/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/G013004/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/G013985/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/G024650/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/H022333/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0900753/Medical Research Council/United Kingdom -- G0900753(91100)/Medical Research Council/United Kingdom -- England -- Nature. 2012 Nov 29;491(7426):705-10. doi: 10.1038/nature11650.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Genome Research, University of Liverpool, Liverpool L69 7ZB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23192148" target="_blank"〉PubMed〈/a〉
    Keywords: Brachypodium/genetics ; *Bread ; Chromosomes, Plant/genetics ; Crops, Agricultural/genetics ; DNA, Complementary/genetics ; DNA, Plant/genetics ; Evolution, Molecular ; Genes, Plant/genetics ; Genome, Plant/*genetics ; Genomics ; Multigene Family/genetics ; Oryza/genetics ; Polymorphism, Single Nucleotide/genetics ; Polyploidy ; Pseudogenes/genetics ; Sequence Alignment ; Sequence Analysis, DNA ; Triticum/classification/*genetics ; Zea mays/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...