ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: We report the detection of coherent pulsations from the ultraluminous X-ray source (ULX) NGC 7793P13. The approx. =0.42 s nearly sinusoidal pulsations were initially discovered in broadband X-ray observations using XMM-Newton and NuSTAR taken in 2016. We subsequently also found pulsations in archival XMM-Newton data taken in 2013 and 2014. The significant (〉〉5(sigma)) detection of coherent pulsations demonstrates that the compact object in P13 is a neutron star, and given the observed peak luminosity of 10(exp 40) erg/ s (assuming isotropy), it is well above the Eddington limit for a 1.4 Stellar Mass accretor. This makes P13 the second ULX known to be powered by an accreting neutron star. The pulse period varies between epochs, with a slow but persistent spin-up over the 2013-2016 period. This spin-up indicates a magnetic field of B1.51012 G, typical of many Galactic accreting pulsars. The most likely explanation for the extreme luminosity is a high degree of beaming; however, this is difficult to reconcile with the sinusoidal pulse profile.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN46807 , The Astrophysical Journal Letters (ISSN 2041-8205) (e-ISSN 2041-8213); 831; 2; L14
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: We present results from four new broadband X-ray observations of the extreme ultraluminous X-ray source Holmberg IX X-1 (L (sub X) greater than 10 (sup 40) ergs per second), performed by Suzaku and NuSTAR in coordination. Combined with the archival data, we now have broadband observations of this remarkable source from six separate epochs. Two of these new observations probe lower fluxes than seen previously, allowing us to extend our knowledge of the broadband spectral variability exhibited. The spectra are well fit by two thermal blackbody components that dominate the emission below 10 kiloelectronvolts, as well as a steep (Gamma approximately equal to 3.5) power-law tail thatdominates above approximately 15 kiloelectronvolts. Remarkably, while the 0.3-10.0 kiloelectronvolts flux varies by a factor of approximately 3 between all these epochs, the 15-40 kiloelectronvolts flux varies by only approximately 20 percent. Although the spectral variability is strongest in the approximately 1-10 kiloelectronvolts band, both of the thermal components are required to vary when all epochs are considered. We also revisit the search for iron absorption features by leveraging the high-energy NuSTAR data to improve our sensitivity to extreme velocity outflows in light of the ultra-fast outflow recently detected in NGC 1313 X-1. Iron absorption from a similar outflow along our line of sight can be ruled out in this case. We discuss these results in the context of super-Eddington accretion models that invoke a funnel-like geometry for the inner flow, and propose a scenario in which we have an almost face-on view of a funnel that expands to larger radii with increasing flux, resulting in an increasing degree of geometrical collimation for the emission from intermediate-temperature regions.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN46238 , Astrophysical Journal (ISSN 2041-8205) (e-ISSN 2041-8213); 839; 2; 105
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: We present Neutron Star Interior Composition Explorer (NICER) observations of the neutron star (NS) low-mass X-ray binary Serpens X-1 during the early mission phase in 2017. With the high spectral sensitivity and low-energy X-ray passband of NICER, we are able to detect the Fe L line complex in addition to the signature broad, asymmetric Fe K line. We confirm the presence of these lines by comparing the NICER data to archival observations with XMM-Newton/Reflection Grating Spectrometer (RGS) and NuSTAR. Both features originate close to the innermost stable circular orbit (ISCO). When modeling the lines with the relativistic line model RELLINE, we find that the Fe L blend requires an inner disk radius of 1.4(sup 0.2, sub -0.1)R(sub ISCO) and Fe K is at 1.03(sup 0.13, sub -0.03)R(sub ISCO) (errors quoted at 90%). This corresponds to a position of 17(sup 2.5, sub -1.2)km and 12(sup 1.6, sub -0.4)km for a canonical NS mass (M(sub NS)=1.4 solar mass) and dimensionless spin value of a = 0. Additionally, we employ a new version of the RELXILL model tailored for NS(sub s) and determine that these features arise from a dense disk and supersolar Fe abundance.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN57931 , The Astrophysical Journal Letters (ISSN 2041-8205) (e-ISSN 2041-8213); 858; L5; No. 1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: We report the detection of coherent pulsations from the ultraluminous X-ray source (ULX) NGC 7793 P13. The approximately 0.42s nearly sinusoidal pulsations were initially discovered in broadband X-ray observations using XMM-Newton and NuSTAR taken in 2016. We subsequently also found pulsations in archival XMM-Newton data taken in 2013 and 2014. The significant (〉〉5 sigma ) detection of coherent pulsations demonstrates that the compact object in P13 is a neutron star, and given the observed peak luminosity of approximately 10 (exp 40) erg s (exp -1) (assuming isotropy), it is well above the Eddington limit for a 1.4 solar mass accretor. This makes P13 the second ULX known to be powered by an accreting neutron star. The pulse period varies between epochs, with a slow but persistent spin-up over the 2013"2016 period. This spin-up indicates a magnetic field of B approximately 1.5 x -10 (exp 12) G, typical of many Galactic accreting pulsars. The most likely explanation for the extreme luminosity is a high degree of beaming; however, this is difficult to reconcile with the sinusoidal pulse profile.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN60711 , The Astrophysical Journal Letters (ISSN 2041-8205) (e-ISSN 2041-8213); 831; 2; L14
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: We present a detailed spectral analysis of XMM-Newton and NuSTAR observations of the accreting transient black hole GRS1739278 during a very faint low hard state at 0.02% of the Eddington luminosity (for a distance of 8.5 kpc and a mass of 10 solar mass). The broadband X-ray spectrum between 0.5 and 60 keV can be well-described by a power-law continuum with an exponential cutoff. The continuum is unusually hard for such a low luminosity, with a photon index of =1.39+/-0.04. We find evidence for an additional reflection component from an optically thick accretion disk at the 98% likelihood level. The reflection fraction is low, with R(sub refl) = 0.043(exp + 0.033)(sub - 0.023). In combination with measurements of the spin and inclination parameters made with NuSTAR during a brighter hard state by Miller et al., we seek to constrain the accretion disk geometry. Depending on the assumed emissivity profile of the accretion disk, we find a truncation radius of 15-35 R(sub g) (5-12 R(sub ISCO)) at the 90% confidence limit. These values depend strongly on the assumptions and we discuss possible systematic uncertainties.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN60680 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 832; 2; 115
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: We report on a Neutron star Interior Composition Explorer (NICER) observation of the Galactic X-ray binary and stellar-mass black hole candidate, MAXI J1535571. The source was likely observed in an "intermediate" or "very high" state, with important contributions from both an accretion disk and hard X-ray corona. The 2.3-10 keV spectrum shows clear hallmarks of relativistic disk reflection. Fits with a suitable model strongly indicate a nearmaximal spin parameter of a = cJ/GM(exp 2) = 0.994(2) and a disk that extends close to the innermost stable circular orbit, r/r(sub ISCO) = 1.08(8) (1 statistical errors). In addition to the relativistic spectrum from the innermost disk, a relatively narrow Fe K emission line is also required. The resolution of NICER reveals that the narrow line may be asymmetric, indicating a specific range of emission radii. Fits with a relativistic line model suggest an inner radius of r = 144 +140/-60 GM/c(exp 2) for the putative second reflection geometry; full reflection models suggest that radii a few times larger are possible. The origin of the narrow line is uncertain, but a warp likely provides the most physically plausible explanation. We discuss our results in terms of the potential for NICER to reveal new features of the inner and intermediate accretion disk around black holes.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN60607 , Astrophysical Journal Letters (ISSN 2041-8205) (e-ISSN 2041-8213); 860; 2; L28
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-09
    Description: The High-Energy X-ray Probe (HEX-P) is a next-generation high-energy X-ray observatory with broadband (2-200 keV) response that has 40 times the sensitivity of any previous mission in the 10-80 keV band and 〉 100 times the sensitivity of any previous mission in the 80-200 keV band. With this leap in observational capability, HEX-P will address a broad range of science objectives beyond any planned mission in the hard X-ray bandpass. HEX-P will probe the extreme environments around black holes and neutron stars, map the growth of supermassive black holes, and quantify the effect they have on their environments. HEX-P will resolve the hard X-ray emission from dense regions of our Galaxy to understand the high- energy source populations and investigate dark matter candidate particles through their decay channel signatures. If developed and launched on a timescale similar to Athena, the complementary abilities of the two missions will greatly enhance the Communitys ability to address the important science questions of the hot universe. HEX-P addresses science that is not planned by any flagship-class missions, and is beyond the capability of an Explorer-class mission.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN70894
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: This article provides supplemental information for a Letter reporting the rate of (BBH) coalescences inferred from 16 days of coincident Advanced LIGO observations surrounding the transient (GW) signal GW150914. In that work wereported various rate estimates whose 90% confidence intervals fell in the range 2600 Gpc(exp -3) yr(exp -1). Here we givedetails on our method and computations, including information about our search pipelines, a derivation of ourlikelihood function for the analysis, a description of the astrophysical search trigger distribution expected frommerging BBHs, details on our computational methods, a description of the effects and our model for calibrationuncertainty, and an analytic method for estimating our detector sensitivity, which is calibrated to our measurements.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN44086 , The Astrophysical Journal: Supplement Series (ISSN 0067-0049) (e-ISSN 1538-4365); 227; 2; 14
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The Large Observatory For x-ray Timing (LOFT) is a mission concept which was proposed to ESA as M3 and M4 candidate in the framework of the Cosmic Vision 2015-2025 program. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument and the uniquely large field of view of its wide field monitor, LOFT will be able to study the behaviour of matter in extreme conditions such as the strong gravitational field in the innermost regions close to black holes and neutron stars and the supra-nuclear densities in the interiors of neutron stars. The science payload is based on a Large Area Detector (LAD, is greater than 8m2 effective area, 2-30 keV, 240 eV spectral resolution, 1 degree collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g., GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the current technical and programmatic status of the mission.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN44111 , SPIE Astronomical Telescopes + Instrumentation; Jun 26, 2016 - Jul 01, 2016; Edinburgh, Scotland; United Kingdom|Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray; 9905; 99051R
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Arcus will be proposed to the NASA Explorer program as a free-flying satellite mission that will enable high-resolution soft X-ray spectroscopy (8-50 Angstroms) with unprecedented sensitivity-effective areas of greater than 500 sq cm and spectral resolution greater than 2500. The Arcus key science goals are (1) to determine how baryons cycle in and out of galaxies by measuring the effects of structure formation imprinted upon the hot gas that is predicted to lie in extended halos around galaxies, groups, and clusters, (2) to determine how black holes influence their surroundings by tracing the propagation of out-flowing mass, energy and momentum from the vicinity of the black hole out to large scales and (3) to understand how accretion forms and evolves stars and circumstellar disks by observing hot infalling and outflowing gas in these systems. Arcus relies upon grazing incidence silicon pore X-ray optics with the same 12m focal length (achieved using an extendable optical bench) that will be used for the ESA Athena mission. The focused X-rays from these optics will then be diffracted by high-efficiency off-plane reflection gratings that have already been demonstrated on sub-orbital rocked flights, imaging the results with flight-proven CCD detectors and electronics. The power and telemetry requirements on the spacecraft are modest. The majority of mission operations will not be complex, as most observations will be long (~100 ksec), uninterrupted, and pre-planned, although there will be limited capabilities to observe targets of opportunity, such as tidal disruption events or supernovae with a 3-5 day turnaround. After the end of prime science, we plan to allow guest observations to maximize the science return of Arcus to the community.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN43826 , Space Telescopes and Instrumentation 2016; Edinburgh; United Kingdom|Proceedings of SPIE (ISSN 0277-786X); 9905; 99054M
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...